Mostrando entradas con la etiqueta ROCAS. Mostrar todas las entradas
Mostrando entradas con la etiqueta ROCAS. Mostrar todas las entradas

COLUMNAS DE ROCA - CIMENTACIONES SUPERFICIALES.

Un método actualmente usado para incrementar la capacidad de carga de cimentaciones superficiales sobre estratos de arcilla blanda es la construcción de columnas de roca, que consiste generalmente en introducir un vibroflot (sección 12.7) mediante un chorro de agua en el estrato de arcilla blanda para hacer un agujero circular que se extienda a través de la arcilla hasta suelo más firme. El agujero se reliena entonces con una grava seleccionada. La grava en el agujero es gradualmente compactada al retirar el vibrador. La grava usada para la columna de roca tiene tamaños que varían de entre 0.25 y 1.5 pulg (6-40 mm). Las columnas de roca tienen usualmente diámetros de 1.6 - 2.5 pies (0.5-0.75 m) y son espaciadas a distancias de 5-10 pies (1.5-3 m) entre centros. Después de la construcción de las columnas de piedra, siempre debe colocarse un  material de relleno sobre la superficie del terreno y compactarse antes de la construcción de la cimentación. Las columnas de piedra tienden a reducir el asentamiento de las cimentaciones bajo cargas permisibles. Varios casos-historia de proyectos de construcción usando columnas de roca fueron presentados por Hughes y Withers (1974), Hughes y otros (1975), Mitchell y Huber (1985), y otros más.



Asentamiento de cimentación construida sobre columnas de roca.
FIGURA 12.40 Asentamiento de cimentación construida sobre columnas de roca.
En la actualidad no se tiene una manera estándar de estimar el asentamiento de cimentaciones construidas sobre columnas de roca. Sin embargo, con base en la recomendación de Greenwood y Thompson (1984) y en observaciones del autor, se cia en la figura 12.40 una carta tentativa para estimar el asentamiento. Para utilizar la figura 12.40, use el procedimiento siguiente:

1. Determine el área de la sección transversal AS de la columna de roca.
2. Determine el área promedio de la cimentación AF de la columna.
3. Calcule la relación AF/AS.
4. Estime la resistencia cortante no drenada, cu. de la arcilla y el asentamiento probable SF de una cimentación de columna suponiendo que fue construida sin las columnas de piedra.
5. Con valores conocidos de AF/AS y cu, determine la relación SF/SS (SS = asentamiento probable de la cimentación construida sobre columnas de roca) con ayuda de la figura 12.40b.
6. Con valores conocidos de SF y SP/SS, calcule SS.

Hughes y otros (1975) proporcionaron una relación aproximada para la capacidad admisible de carga (qa) de columnas de roca, que se expresa como

Idelización de celda unitaria de una columna de roca.
FIGURA 12.41 Idelización de celda unitaria de una columna de roca.

Las columnas de roca trabajan más efectivamente cuando se usan para estabilizar una gran área donde la resistencia cortante no drenada del subsuelo varía entre 200 y 1000 lb/pie2 (10-15 kN/m2) que cuando se usan para mejorar la capacidad de carga de cimentaciones estructurales (Bachus y Barksdale, 1989). Los subsuelos más débiles que los anteriores no proporcionan suficiente soporte lateral para las columnas de roca. Para el mejoramiento de grandes sitios, las columnas de roca son más efectivas a una profundidad de entre 20 y 30 pies (6-10 m). Sin embargo, las columnas de roca han sido construidas hasta una profundidad de 100 pies (31 m). Bachus y Barksdale dieron las siguientes directrices generales para el diseño de columnas de roca para estabilizar grandes áreas:


La figura 12.41a muestra la vista en planta de varias columnas de piedra, y la figura 12.41b la descripción de una celda unitaria de una columna de roca. La razón de reem




Cuando se aplica un esfuerzo uniforme por medio de una operación de relleno a un área con columnas de roca para inducir consolidación, se presenta una concentración de esfuerzos debido al cambio de la rigidez entre las columnas de roca y el suelo que las rodea (figura 12.41c). El factor, n’, de concentración de esfuerzos se define como




La variación de μc y as y n’ se muestra en la figura 12.42. El mejoramiento del suelo debido a las columnas de roca se expresa como


Variación de μc con as y n’
FIGURA 12.42 Variación de μc con as y n’

CARGA POR PUNTA DE PILOTES SOBRE ROCA.

En algunas ocasiones los pilotes se hincan hasta un estrato subyacente de roca. En tales casos, el ingeniero debe evaluar la capacidad de carga de la roca. La resistencia unitaria última de punta en roca (Goodman, 1980) es aproximadamente


La resistencia a compresión no confinada de la roca se determina por medio de pruebas en laboratorio sobre especímenes de roca obtenidos durante investigaciones de campo. Sin embargo, debe procederse con extremo cuidado al obtener el valor apropiado de qu porque los especímenes de laboratorio son usualmente pequeños en diámetro. Conforme el diámetro del espécimen crece, la resistencia a compresión no confinada decrece, lo que se denomina efecto de escala. Para especímenes mayores que 3 pies (1 m) de diámetro, el valor de qu permanece aproximadamente constante. Parece haber una reducción de cuatro a cinco veces la magnitud de qu en este proceso. El efecto de escala en rocas es principalmente causado por fracturas pequeñas y grandes distribuidas aleatoriamente y también por rupturas progresivas a lo largo de planos de deslizamiento. Por consiguiente, siempre recomendamos que




La tabla 9.3 da valores (de laboratorio) representativos de resistencia a compresión no confinada de rocas. Valores representativos del ángulo, ø de fricción de rocas se dan en la tabla 9.4.

Un factor de seguridad de por lo menos 3 debe usarse para determinar la capacidad de carga admisible de punta en pilotes. Entonces


TABLA 9.3 Resistencia típica a compresión no confinada de rocas.


TABLA 9.4 Valores típicos del ángulo de fricción ø de rocas.

Resistencia y Extracción de las Rocas.

Resistencia.

La resistencia de las rocas se interpreta en función de la capacidad que tienen para resistir esfuerzos de compresión, esfuerzos cortantes y esfuerzos de tensión. La resistencia a tensión de las rocas se desprecia por lo que generalmente se emplea la roca en construcciones donde sólo se presentan esfuerzos de compresión y/o esfuerzos cortantes. La resistencia de las rocas puede ser muy variable, aún tratándose de muestras provenientes de una misma veta, por esta razón los factores de seguridad empleados en el diseño puede variar de 6 a 10 siendo mucho más altos en el caso de piezas de cimentación. Para dar una idea de la capacidad de carga de algunas rocas se presenta la Tabla 2.4, en ella se puede observar la enorme variabilidad que puede existir en un mismo tipo de roca.


Tabla 2.4. Resistencia a la Compresión de Diversas Rocas.

Extracción.

Las rocas se extraen de las formaciones rocosas, las cuales pueden estar cubiertas por suelo o aflorar a la superficie, al lugar del que se extrae la roca se acostumbra a llamar cantera o banco de roca. La forma de extraer la roca depende del uso que se le destine al producto final, por ejemplo si se trata de obtener agregado para concreto o para bases de caminos se emplean explosivos de alto poder, si se requiere para formar bloques que después serán cortados se puede emplear desde pólvora hasta sierras con punta de diamante, todo esto depende de la dureza de la roca y de la precisión de corte que se requiera. El proceso de extracción se planea de antemano de acuerdo a las características de las rocas y los patrones de estratificación. Las fisuras y las grietas son puntos débiles que se deben aprovechar para destruir la roca o en su defecto se deben cuidar para no dañarla en el proceso de extracción.

Rocas Metamórficas e Identificación.

Las  rocas  metamórficas  se  forman  por  recristalización  o reorientación parcial o total de los cristales de una roca ígnea o una sedimentaria debido a altas temperaturas,  altas  presiones  y/o  esfuerzos  cortantes.  El  proceso  de  metamorfismo  puede involucrar la formación de folios (estructura laminar, a base de placas sobrepuestas) que denotan el predominio de fuerzas cortantes transmitidas por las masas de roca, por otro lado la ausencia de fuerzas cortantes da origen a la formación de rocas metamórficas del tipo masivo. El proceso de metamorfismo  es  intensificado  por  la  acción  del  magma  y  los  movimientos  de  las  placas tectónicas así como por la formación de cadenas montañosas y el nacimiento de volcanes.

La Tabla 2.3 presenta los tipos de rocas metamórficas más comunes en el medio de la construcción, algunos rasgos distintivos para su identificación y las rocas de las cuales provienen. Entre las rocas foliadas se encuentran la pizarra, los gneis y los esquistos. Entre las rocas masivas se encuentran la cuarzita y el mármol.

Tabla 2.3. Identificación de las Rocas Metamórficas.

Rocas Sedimentarias e Identificación.

Las rocas, cualquiera que sea su tipo sufren los estragos de la erosión causada por el intemperismo y otros fenómenos a tal grado que se desintegran, el material resultante de la erosión es acarreado ya sea por el viento, los arroyos, ríos y glaciares llegando en ocasiones hasta el mar. A lo largo del trayecto, el material erosionado se acumula y se endurece gracias  a  la  compactación  y  la  cementación,  convirtiéndose  con  el  tiempo  en  una  roca sedimentaria. El proceso descrito también comprende a las rocas sedimentarias formadas por precipitación química o deposición de restos de materia orgánica. En las rocas sedimentarias se puede observar que las superficies de deposición de los sedimentos se conservan dando a las rocas una cierta estratificación, la unión de estos estratos se distingue por los cambios abruptos en el tamaño de las partículas o en el cementante. Las rocas sedimentarias se distinguen de las ígneas precisamente por su estratificación, en las rocas ígneas por el contrario se tiene una estructura masiva. También, las rocas sedimentarias se distinguen porque es posible encontrar en ellas fósiles, en cambio estos no existen en las rocas ígneas.

La   Tabla  2.2  proporciona  algunos  detalles   para  la   identificación  de  las  rocas sedimentarias más comunes en la construcción, las rocas se clasifican en dos tipos, las rocas clásticas que se distinguen por ser resultado de un fenómeno de transporte y las rocas formadas por  precipitación  química  donde  los  minerales  constituyentes  han  sido  transportados  en suspensión y se han precipitado ya sea por reacción química orgánica o inorgánica. Entre las rocas  clásticas  se  encuentran  los  conglomerados, la  arenisca,  y  la  lutita.  Entre  las  rocas formadas por precipitación química se encuentran la caliza y la dolomita.

Tabla 2.2. Identificación de las Rocas Sedimentarias.

Rocas Ígneas e Identificación de Muestras.

Las rocas ígneas se forman por la solidificación del magma a diferentes profundidades ya sean dentro de la corteza terrestre, en el exterior cuando el magma fluye o en el aire cuando el material menos denso sale expulsado durante la erupción de un volcán. La manera en que se enfría el magma influye tanto en la textura como en la estructura propia de las rocas ígneas. Un enfriamiento lento como el que se desarrolla dentro de la corteza terrestre da tiempo a que se formen mejor los cristales que constituyen las rocas, en este caso la textura asociada es generalmente gruesa o mediana, por otro lado un enfriamiento rápido como el que sufre el magma al fluir fuera de la corteza terrestre origina una textura fina, es decir, debido al enfriamiento súbito los cristales no tienen oportunidad de crecer y se quedan tan finos que no se pueden observar a simple vista.

Atendiendo al lugar en el que se enfría el magma las rocas ígneas se pueden clasificar como extrusivas o intrusivas. Las rocas extrusivas se forman en el exterior de la corteza terrestre y las intrusivas en el interior. Por supuesto que la composición mineralógica también se considera en la clasificación de las rocas ígneas, la Figura 2.1 muestra una forma integral de clasificación de las rocas ígneas incluyendo los nombres de las rocas más comunes.


Figura 2.1. Sistema Práctico de Clasificación de Rocas Ígneas.

Detalles de Identificación

Existen algunos detalles que pueden ayudar al ingeniero a identificar muestras de rocas ígneas, por ejemplo el granito posee una textura gruesa con cristales grandes y uniformes en tamaño, predomina el cuarzo y la ortoclasa (feldespato de potasio) estos dos minerales influyen en las tonalidades claras o blancas y rosadas respectivamente, los granitos también pueden ser grises. La diorita posee una textura gruesa, el mineral más abundante en ella es la plagioclasa, se puede observar la presencia de anfíbola, biotita y en ocasiones piroxena, tanto la ortoclasa como el cuarzo pueden estar presentes en pequeñas proporciones o no existir. El gabro es de color muy oscuro  casi  negro,  su  textura es  gruesa  y  cristalina  conteniendo principalmente piroxena y plagioclasa de calcio, el olivino puede estar presente así como la anfíbola, el cuarzo no se encuentra en este tipo de rocas. La peridotita es también una roca intrusiva con textura gruesa, en esta roca el olivino es abundante, lo que le imparte tonalidades verdosas a la roca observándose granos redondeados, también se puede observar en forma notoria la piroxena, la plagioclasa puede existir en muy baja proporción o estar ausente.

Dentro de las rocas extrusivas se encuentran la riolita, la andesita y el basalto. La riolita tiene una textura fina, conteniendo cuarzo en abundancia aunque no visible a simple vista, en menor proporción contiene ortoclasa, plagioclasa de sodio, biotita y anfíbola, sus colores claros pueden ser blanco, gris y rojo, otro aspecto distintivo en ella es que frecuentemente presenta cristales aislados de cuarzo. La andesita es una roca fácilmente confundible con la riolita, aunque se le distingue porque el cuarzo puede estar ausente y sus colores tienden a ser un poco más oscuros, la plagioclasa abunda, pudiendo encontrarse también piroxena, anfíbola y biotita, sus colores  pueden  ser  gris  oscuro,  café  o  verdoso.  El  basalto  es  una  roca  de  textura  fina generalmente oscura debido a la ausencia de cuarzo y abundancia de plagioclasa de calcio, la piroxena es común en ella y el olivino se puede llegar a observar en forma de cristales aislados.

Existen otras rocas como la obsidiana y la piedra pómez que por su textura tan fina se les
clasifica como de textura vítrea. La obsidiana es prácticamente un vidrio (Si O2) y puede adquirir diferentes colores dependiendo de las impurezas que tenga. La piedra pómez es una espuma volcánica que se caracteriza por ser muy ligera debido a la gran cantidad de vacíos producidos por los gases durante su formación, el color de la roca es muy claro. El tezontle es una roca volcánica de textura fina que presenta una gran porosidad, se le suele llamar escoria volcánica, esta roca tiene colores rojizos que van desde el claro hasta el muy oscuro casi negro, se le puede encontrar tanto en forma masiva como en estado suelto como si fuera agregado.

Los volcanes arrojan una gran cantidad de materiales durante la erupción, como cenizas, gases  y  fragmentos  de  muy  diversas  densidades  constituyéndose  los  llamados  materiales piroclásticos, estos materiales se combinan entre sí fusionándose para constituir las tobas y brechas volcánicas.

Las Rocas

En ingeniería las rocas se clasifican en tres tipos que son: ígneas, sedimentarias y metamórficas. Esta clasificación atiende principalmente a la forma en que se originan las rocas. La clasificación de una roca que consistiría en identificarla petrográficamente y ubicarla dentro de los tres tipos mencionados no nos indica ninguna cualidad ingenieril  puesto que no se basa en ensayes mecánicos, pero nos ayuda a visualizar el posible comportamiento de la roca cuando forme  parte  de  una  construcción.  En  algunas  ocasiones,  es  posible  que  las  necesidades constructivas  se  satisfagan  sin  ningún  problema  con  rocas  de  cualquiera  de  los  tres  tipos mencionados, en otras, tal vez sea necesario seleccionar de entre varias alternativas aquel tipo y variedad de roca con la que se cumpla mejor con las especificaciones o los requerimientos impuestos.

Minerales y la Escala de Durezas de Mohs

Los minerales, elementos básicos de las rocas son sustancias inorgánicas que poseen una estructura  cristalográfica  bien  definida  así  como  una  composición  química  muy  particular.

Muchos de los rasgos distintivos de las rocas se deben a las características de los minerales que las forman. Algunas de las características físicas que distinguen a los minerales son: el color, la ralladura, la  dureza, el  clivaje  (planos de  falla)  y  la  fractura, la  forma del  cristal,  el  peso específico, el lustre y la habilidad para transmitir la luz. El ingeniero civil casi siempre se basa en análisis de comparación para identificar a los minerales que constituyen las rocas, en problemas de identificación se puede requerir de la ayuda de un especialista en cristalografía. En ocasiones el mismo especialista debe apoyarse en análisis de difracción de rayos x como único medio para distinguir al mineral en cuestión.

Como existen muchas propiedades mecánicas asociadas a la dureza de los minerales, una tabla que resulta muy útil entre los ingenieros es la tabla de la escala de durezas de Mohs, la cual se aplica por comparación, esto es, contando con muestras de los minerales que en ella se indican se puede detectar la dureza de un nuevo mineral si se le compara rayándolo. Los minerales de mayor dureza rayan a los de menor dureza. En la escala de Mohs mostrada en la Tabla 2.1, el talco es el mineral más suave y el diamante es el más duro.

Tabla 2.1. Escala de Durezas de Mohs.


Entre algunos de los minerales que abundan en la corteza terrestre y que en diversos porcentajes constituyen a las rocas tenemos:

Feldespatos

Ortoclasa, de colores rosa, blanco y gris-verdoso, K(Al)Si3O8.
Plagioclasa, de colores gris, verde, blanco y rojo, Na(Al)Si3O8.
Cuarzo, no presenta un color definido pero se distingue por su lustre vítreo, SiO2.
Micas
Muscovita, mica blanca formada por hojas translúcidas, H2KAl3(SiO4)3. Biotita, mica obscura, más sensible al deterioro, H2K(MgFe)3Al(SiO4)3.
Calcita, color blanco o sin color, Ca CO3.
Dolomita, color blanco o multicolor, dureza 3.5-4.0 según Mohs, Ca Mg(CO3)2.
Piroxena  y  Anfíbola,  de  colores  obscuros,  son  silicatos  complejos  de  fierro  y  magnesio

(ferromagnesianos).

De  entre estos minerales, el  cuarzo se  distingue por  ser  el  de  mayor resistencia al deterioro. Los feldespatos son menos resistentes, en particular la ortoclasa es susceptible al deterioro cuando está bajo la acción del agua y del bióxido de carbono, llegando a descomponerse en minerales arcillosos como la muscovita. La mica asociada a rocas en cantidades apreciables casi siempre es motivo de cuidados, la razón principal es que la mica posee un clivaje fácil de inducir y puede resultar en un rápido deterioro de la roca, especialmente si está expuesta a la intemperie. Por otro lado, los carbonatos de calcio presentes tanto en la calcita como en la dolomita son susceptibles de disolverse en agua. Estos aspectos distintivos de los minerales influyen en el comportamiento de las rocas que forman, sin embargo no debe olvidarse que sea cual sea el proceso de deterioro natural de las rocas el tiempo que debe transcurrir es muy grande.