Entre los ejemplos más sencillos pueden distinguirse dos casos: el tirante como elemento de eje recto sujeto a una carga actuante en dirección de su eje, y el cable colgante que sirve para resistir cargas transversales y que toma la configuración adecuada a cada sistema de carga que está sujeto. Un aspecto especialmente importante en el diseño de un elemento en tensión es la necesidad de un anclaje. Este elemento transmite la fuerza en él aplicada a un punto de apoyo que puede ser otra parte de la estructura o el terreno. Cuando la reacción se transmite a la estructura, puede introducir en ella solicitaciones importantes, cuando se transmite al terreno debe ser contrarrestada ya sea por gravedad, mediante un elemento de anclaje cuyo peso equilibre la reacción, ya sea por fricción entre un elemento de anclaje y el terreno. El dispositivo de anclaje puede resultar complejo y costoso, ya que suelen introducirse en él concentraciones de esfuerzos muy elevadas.
Otra característica de los elementos de tensión es su escasa o nula rigidez para fuerzas que actúan fuera de su eje. Con frecuencia los tirantes se diseñan con cierta rigidez transversal para que absorban flexiones accidentales, como diagonales de armaduras, por ejemplo.
El material obvio para trabajar en tensión es el acero, por su alta resistencia y por la relativa facilidad de ser anclado. En elementos largos y en estructuras importantes es común utilizar aceros de muy alta resistencia para aprovechar al máximo la potencialidad de este material, aunque con ello se presentan mayores dificultades en el anclaje. Cuando no se pretende que el elemento tenga rigidez transversal, la sección ideal es la circular, barra maciza o cable. El concreto reforzado se emplea en ocasiones en tirantes, aunque aquí la función del concreto es puramente de protección del refuerzo que es el que proporciona resistencia a tensión. La ventaja de un tirante de concreto es que puede funcionar como puntal si las cargas llegan a cambiar de sentido y requieren que el elemento trabaje a compresión. El anclaje de tirantes de concreto se realiza normalmente por adherencia de las barras de concreto dentro de la parte de la estructura contra la que se aplica la reacción. El empleo del refuerzo en tirantes de concreto reduce el problema del agrietamiento ante esfuerzos de tensión. La buena resistencia a tensión de la madera permitiría su uso como tirante, sin embargo las dificultades de anclaje hacen poco conveniente el empleo de este material para dicho fin, excepto para elementos cortos, como diagonales de armadura. La mampostería obviamente es inadecuada por su pobre resistencia a tensión.
El poste es el elemento barra sujeto a compresión axial. Su denominación más común de columna es más apropiada cuando está sujeto a condiciones de carga más complejas que incluyen flexión. Cuando el poste es inclinado adquiere el nombre de puntal. El estado de compresión perfectamente axial es meramente ideal en las estructuras ya que, por las condiciones de continuidad o imperfección de la construcción, siempre se presentan excentricidades accidentales de la carga aplicada, las cuales dan lugar a que ésta se encuentre acompañada de cierta flexión.
El equivalente del cable colgante para esfuerzos de compresión es el arco. Sin embargo, mientras que el cable cambia de forma para transmitir las cargas a los apoyos por medio de tensión puramente axial, el arco es una estructura rígida que transmite las cargas a los apoyos por compresión pura sólo si su forma corresponde exactamente al funicular de las cargas aplicadas. Cualquier desviación de esta trayectoria implica la aparición de flexiones para que la carga pueda ser transmitida a los apoyos. La magnitud de las flexiones es proporcional a la desviación (excentricidad) entre el eje del arco y el funicular de cargas. La reacción en el apoyo tiene un componente horizontal, llamada coceo, que introduce problemas en el resto de la estructura, especialmente cuando el arco es elevado. Variando la geometría del arco se modifica la magnitud de las flexiones que se introducen y la del coceo.
Las mamposterías y el concreto han sido los materiales más comunes para la construcción de arcos, aprovechando su alta resistencia en compresión y su bajo costo. El arco es la forma natural de transmitir cargas transversales con estos materiales que no tienen capacidad apreciable en tensión y por tanto no son aptos para transmitirla por flexión como en las vigas, sino sólo por compresión como en los arcos. El acero es también adecuado para esta forma estructural, aunque los problemas de pandeo suelen regir su diseño, por lo cual las secciones abiertas de gran momento de inercia son las más adecuadas en este caso.
Una barra sujeta a cargas normales a su eje es una viga, aunque este nombre se le asigna comúnmente sólo cuando la barra es horizontal. Una viga resiste y transmite a sus apoyos la carga por medio de flexión y cortante. La variación de esfuerzos normales a lo largo de la sección define una resultante de compresión y una de tensión que deben ser iguales, ya que la carga axial externa es nula. La magnitud del momento máximo que puede resistir la sección está definida por a magnitud de las resultantes de los esfuerzos internos de tensión y compresión que pueden desarrollarse y del brazo de palanca de dichas fuerzas. En una sección rectangular cuando se alcanza el esfuerzo máximo en la fibra extrema, más de la mitad de la sección esta sujeta a menos de la mitad de dicho esfuerzo máximo, por lo tanto la sección es poco eficiente, al contrario de lo que ocurre para la carga axial de tensión o de compresión en que toda la sección está sujeta a un esfuerzo máximo constante. Para aumentar la eficiencia de una sección conviene concentrar más área cerca de los extremos. En acero las secciones I son ideales para esta función; en el concreto reforzado la sección T proporciona una mayor área de concreto en la parte superior para equilibrar en compresión la fuerza de tensión que puede desarrollar el acero en la parte inferior de la sección.
Además de la flexión principal, otros estados límite rigen el dimensionamiento de una viga: la falla por cortante, el pandeo lateral del patín de compresión y el pandeo local de la zona en compresión suelen resultar críticos para definir las dimensiones del alma de la viga, de su momento de alrededor del eje débil y de los espesores de las diferentes partes de la sección, respectivamente. Ocasionalmente, las vigas deben resistir, además momentos flexionantes en dirección normal al plano de las cargas principales, así como momentos torsionantes. Todo ello hace la sección que puede resultar óptima para fines de resistir la flexión principal no es necesariamente la más adecuada al considerar los otros estados límite.
Un aspecto importante en las vigas es la revisión del estado limite de deflexiones. En elementos sujetos a compresión o a tensión axial las deformaciones son muy pequeñas y no suelen regir el dimensionamiento. En vigas con mucha frecuencia el momento de inercia necesario esta regido por el comportamiento de los requisitos de las flechas máximas admisibles y no por el de resistencia.
Otra diferencia de la viga con respecto al tirante y al poste es que, mientras que en estos últimos los esfuerzos son prácticamente constantes en todo el elemento, en vigas los diafragmas de momentos y de cortantes varían de una a otra sección según la forma de apoyo y el tipo de carga. En materiales como la madera y el acero, las formas disponibles obligan casi siempre a proporcionar en todas las secciones de un elemento, propiedades uniformes e iguales a las que se requieren únicamente en las secciones críticas, por lo que en la mayoría de las secciones la resistencia será superior a la necesaria. En el concreto reforzado se tiene mucho más facilidad para variar la resistencia de una sección a otra, cambiando la cantidad y posición del refuerzo de manera de tener la resistencia distribuida en forma similar a la requerida por el diafragma de momentos debido a las cargas actuantes.
Para un funcionamiento eficiente como viga es esencial contar con materiales con apreciable resistencia en tensión; de allí que el acero solo o como refuerzo del concreto, y la madera sean los materiales más empleados para formar estos elementos estructurales. El uso de la madera como se ha dicho, esta restringido a claros relativamente pequeños por las limitaciones de dimensiones disponibles de los elementos, aunque este inconveniente puede ser superado en la madera laminada pegada. En el acero se cuenta con una amplia gama de perfiles laminados y además con la posibilidad de obtener secciones de formas más adecuadas al uso específico, armándolas a partir de placas y perfiles soldados. Los problemas de pandeo lateral, de pandeo local y de flexiones rigen frecuentemente el diseño de vigas de este material. Para vigas de tamaño pequeño, las secciones más eficientes son las que se forman doblando en frío laminas delgadas de acero de alta resistencia; esto da lugar a secciones muy eficientes, no solo en flexión principal, sino también para pandeo lateral y local y para flexión sobre el eje débil. Secciones muy eficientes son también las de alma abierta en las que la fuerza cortante no se resiste a través de un medio continuo, sino de elementos diagonales, dando lugar a un funcionamiento como armadura.
Es en la viga donde el concreto reforzado, y especialmente el presforzado, encuentra su aplicación más eficiente al integrar un material compuesto que aprovecha las ventajas de sus dos materiales componentes. En el concreto reforzado elaborado en sitio la búsqueda de secciones más eficientes que la rectangular, o la T, no se justifique en general por el mayor costo de la cimbra. Por el contrario, en los elementos prefabricados, generalmente presforzados, es usual emplear secciones de formas más elaboradas en las que se obtiene un mayor aprovechamiento del material con menor área, lo que redunda en un ahorro no solo por menor costo de material, sino principalmente por menor peso propio de la viga.
Existe un gran número de secciones compuestas en que se trata esencialmente de combinar una parte prefabricada con alta resistencia en tensión con otra buena resistencia en compresión, de menor costo y generalmente que pueda formar sistemas de piso. Para que se garantice el trabajo conjunto de la sección compuesta es necesario que se cuente con capacidad para transmitir esfuerzos tangenciales en la superficie de contacto, lo que puede lograrse por fricción, adhesión o por anclaje mecánico.
No hay comentarios:
Publicar un comentario