martes, 11 de marzo de 2014

PRINCIPALES MATERIALES ESTRUCTURALES

La gran gama de materiales que pueden llegar a emplearse con fines estructurales es muy amplia. Aquí sólo se destacarán algunas de las peculiaridades del comportamiento estructural de los materiales más comúnmente usados.

Los materiales pétreos de procedencia natural o artificial fueron, junto con la madera, los primeros utilizados por el hombre en sus construcciones. Se caracterizan por tener resistencia y módulo de elasticidad en compresión relativamente altos y por una baja resistencia en tensión. La falla es de carácter frágil, tanto en compresión como en tensión. El material formado por un conjunto de piedras naturales o artificiales unidas o sobrepuestas se denomina mampostería. Las zonas de contacto entre las piezas o piedras individuales constituyen planos de debilidad para la transmisión de esfuerzos de tensión y de cortante. La unión entre las piedras individuales se realiza en general por medio de juntas de morteros de diferentes composiciones. La mampostería de piedras artificiales está constituida por piezas de tamaño pequeño con relación a las dimensiones del elemento constructivo que con ellas se integra. Las piezas pueden tener una gran variedad de formas y de materiales constitutivos; entre los más comunes están el tabique macizo o hueco de barro fabricado de manera artesanal o industrializado, el bloque hueco de concreto y el tabique macizo del mismo material, así como el ladrillo sílico-calcáreo. En la construcción rural se emplean también el adobe (tabique de barro sin cocer) y el suelo-cemento (barro estabilizado con cemento, cal o materiales asfálticos). El concreto simple suele clasificarse dentro de la categoría de las mamposterías, debido a que  sus características estructurales y de tipo de fabricación y empleo son semejantes. Aunque no presenta los planos débiles debido a uniones, su resistencia en tensión es muy baja y suele despreciarse en el diseño.

Las propiedades estructurales de la mampostería están sujetas en general a dispersiones elevadas debido al poco control que puede ejercerse sobre las características de los materiales constructivos y sobre el proceso de construcción que es en general esencialmente artesanal. Valores típicos del coeficiente de variación de la resistencia en compresión  de elementos de mampostería se encuentra entre 30 y 40 por ciento, aunque los elementos de piezas fabricadas industrialmente y construidos con mano de obra cuidadosa pueden lograrse valores substancialmente menores. Por la elevada variabilidad de las propiedades, los factores de seguridad fijados por las normas para el diseño de estructuras de mampostería son mayores que los que corresponden a los otros materiales estructurales.

El aprovechamiento mejor de la mampostería para fines estructurales se tiene en elementos masivos que estén sometidos esencialmente a esfuerzos de compresión, como los muros y los arcos. Se emplea también cuando se quiere aprovechar el peso del elemento estructural para equilibrar esfuerzos de tensión inducidos por las cargas externas; tal es el caso de los muros de contención. La mampostería tiende a entrar en desuso en los países industrializados debido a que requiere el uso intensivo de mano de obra, lo que la hace poco competitiva con otros materiales. Sin embargo, sigue teniendo amplio campo de aplicación en muchos países, cada vez más en relación con las piezas de tipo industrializado y de mejores propiedades estructurales.

El refuerzo de los materiales pétreos permite eliminar la principal limitación estructural de  la mampostería, o sea su baja resistencia a esfuerzos de tensión. En general, el refuerzo consiste en varillas de acero integradas a la mampostería en las zonas y en la dirección en las que pueden aparecer tensiones.

El concreto reforzado es el más popular y desarrollado de estos materiales, ya que aprovecha en forma muy eficiente las características de buena resistencia en compresión, durabilidad, resistencia al fuego y moldeabilidad del concreto, junto con las de alta resistencia en tensión y ductilidad del acero, para formar un material compuesto que reúne muchas de las ventajas de ambos materiales componentes. Manejando de manera adecuada la posición y cuantía del refuerzo, se puede lograr un comportamiento notablemente dúctil en elementos sujetos a flexión. Por el contrario, el comportamiento es muy poco dúctil cuando la falla está regida por otros estados límite como cortante, torsión, adherencia y carga axial de compresión. En este último caso puede eliminarse el carácter totalmente frágil de la falla  si se emplea refuerzo transversal en forma de zuncho. El concreto está sujeto a deformaciones importantes por contracción y flujo plástico que hacen que sus propiedades de rigidez varíen con el tiempo. Estos fenómenos deben ser considerados en el diseño, modificando adecuadamente los resultados de los análisis elásticos y deben tomarse precauciones en la estructuración y el dimensionamiento para evitar que se presenten flechas excesivas o agrietamientos por  cambios volumétricos.

Por su moldeabilidad, el concreto se presta a tomar las formas más adecuadas para el funcionamiento estructural requerido y, debido a la libertad con que se puede colocar el refuerzo en diferentes cantidades y posiciones, es posible lograr que cada porción de la estructura tenga la resistencia necesaria para las fuerzas internas que se presentan. El monolitismo es una característica casi obligada del concreto colado en sitio; al prolongar y anclar el refuerzo en las juntas pueden transmitirse los esfuerzos de uno a otro elemento y se logra continuidad en la estructura.

Las dimensiones generalmente robustas de las secciones y el peso volumétrico relativamente alto del concreto hacen que el peso propio sea una acción preponderante en el diseño de las estructuras de este material y en el de las cimentaciones que las soportan. Los concretos elaborados con agregados ligeros se emplean con frecuencia en muchos países para reducir la magnitud del peso propio. Se incrementan, sin embargo, en estos casos las deformaciones por contracción y flujo plástico y se reduce el módulo de elasticidad para una resistencia dada.

Mediante una dosificación adecuada de los ingredientes, puede proporcionarse la resistencia a compresión más conveniente para la función estructural que debe cumplirse. Aunque para las estructuras comunes resulta más económico emplear resistencias cercanas a 250 kg/cm2, éstas pueden  variarse con relativa facilidad entre 150 y 500 kg/cm2 y pueden alcanzarse valores aún mayores con cuidados muy especiales en la calidad de los ingredientes y el proceso de fabricación.

La variabilidad de las propiedades mecánicas es reducida si se observan precauciones rigurosas en la fabricación, en cuyo caso son típicos coeficientes de variación de la resistencia en compresión poco superiores a 10 por ciento. Se tienen dispersiones radicalmente mayores cuando los ingredientes se dosifican por volumen y sin tomar en cuenta la influencia de la humedad y la absorción de los agregados en las cantidades de agua necesarias en la mezcla. Coeficientes de variación entre 20 y 30 por ciento son frecuentes en estos casos para la resistencia en compresión.

Una modalidad más refinada del concreto reforzado permite eliminar o al menos reducir, el inconveniente del agrietamiento del concreto que es consecuencia natural de los esfuerzos elevados de  tensión a los que se hace trabajar al acero de refuerzo. Este problema se vuelve más importante a medida que los elementos estructurales son de proporciones mayores y aumentan las fuerzas que se  quieren desarrollar en el acero, como es el caso de vigas de grandes claros para techos y para puentes. Esta modalidad es el concreto presforzado que consiste en inducir esfuerzos de compresión en  las zonas de concreto que van a trabajar en tensión y así lograr que bajo condiciones normales de  operación, se eliminen o se reduzcan los esfuerzos de tensión en el concreto y, por tanto, no se produzca agrietamiento. Las compresiones se inducen estirando el acero con que se refuerza la sección de concreto y haciéndolo reaccionar contra la masa de concreto. Para evitar que el presfuerzo inicial se pierda en su mayor parte debido a los cambios volumétricos del concreto, se emplea refuerzo de muy alta resistencia (superior a 15,000 kg/cm2).

Otras modalidades de refuerzo del concreto han tenido hasta el momento aplicación limitada, como el refuerzo con fibras cortas de acero o de vidrio, dispersas en la masa de concreto para proporcionar resistencia a tensión en cualquier dirección así como alta resistencia al impacto; o como el refuerzo con placas de acero plegadas en el exterior del elemento con resinas epóxicas de alta adherencia.

También en la mampostería se ha usado refuerzo con barras de acero con la misma finalidad que
para el concreto. La mampostería reforzada ha tenido un adelanto mucho menor que el concreto
reforzado, porque su empleo casi obligado es en muros, donde bajo las cargas verticales las solicita-
ciones son casi siempre sólo de compresión. Es poco práctico construir vigas y losas de mamposte-
ría, en las que se requiere refuerzo de tensión.

En zonas sísmicas y en construcciones que pueden estar sujetas a hundimientos diferenciales de sus apoyos, debe preverse la aparición de tensiones por flexión o por tensión diagonal en los muros de mampostería y es necesario proporcionar algún tipo de refuerzo. El refuerzo puede ser en el interior de piezas huecas, como los bloques de concreto, o concentrado en pequeños elementos aislados, como en mampostería de piedra natural o artificial de piezas macizas.

La madera tiene características muy convenientes para su uso como material estructural y como tal se ha empleado desde los inicios de la civilización. Al contrario de la mayoría de los materiales estructurales, tiene resistencia a tensión superior a la de compresión, aunque esta última es también  aceptablemente elevada. Su buena resistencia, su ligereza y su carácter de material natural renovable constituyen las principales cualidades de la madera para su empleo estructural. Su comportamiento es relativamente frágil en tensión y aceptablemente dúctil en compresión, en que la falla se debe al pandeo progresivo de las fibras que proporcionan la resistencia. El material es fuertemente anisotrópico, ya que su resistencia en notablemente mayor en la dirección de las fibras que en las  ortogonales de ésta. Sus inconvenientes principales son la poca durabilidad en ambientes agresivos, que puede ser subsanada con un tratamiento apropiado, y la susceptibilidad al fuego, que puede reducirse sólo parcialmente con tratamientos retardantes y más efectivamente protegiéndola con recubrimientos incombustibles. Las dimensiones y formas geométricas disponibles son limitadas por el tamaño de los troncos; esto se supera en la madera laminada pegada en que piezas de madera  de pequeño espesor se unen con pegamentos de alta adhesión para obtener formas estructuralmente eficientes y lograr estructuras en ocasiones muy atrevidas y de gran belleza.

El problema de la anisotropía se reduce en la madera contrachapeada en el que se forman placas  de distinto espesor pegando hojas delgadas con las fibras orientadas en direcciones alternadas en  cada chapa.

La unión entre los elementos de madera es un aspecto que requiere especial atención y para el  cual existen muy diferentes procedimientos. Las propiedades estructurales de la madera son muy  variables según la especie y según los defectos que puede presentar una pieza dada; para su uso  estructural se requiere una clasificación que permita identificar piezas con las propiedades mecánicas deseadas. En algunos países el uso estructural de la madera es muy difundido y se cuenta con una clasificación estructural confiable; en otros su empleo con estos fines es prácticamente inexistente y es difícil encontrar madera clasificada para fines estructurales.

De los materiales comúnmente usados para fines estructurales, el acero es el que tiene mejores  propiedades de resistencia, rigidez y ductilidad. Su eficiencia estructural es además alta; debido a  que puede fabricarse en secciones con la forma más adecuada para resistir flexión, compresión u  otro tipo de solicitación. Las resistencias en compresión y tensión son prácticamente idénticas y  pueden hacerse variar dentro de un intervalo bastante amplio modificando la composición química o  mediante trabajo en frío. Hay que tomar en cuenta que a medida que se incrementa la resistencia del  acero se reduce su ductilidad y que al aumentar la resistencia no varía el módulo de elasticidad, por  lo que se vuelven más críticos los problemas de pandeo local de las secciones y global de los ele- mentos. Por ello, en las estructuras normales la resistencia de los aceros no excede de 2500 kg/cm2,  mientras que para refuerzo de concreto, donde no existen problemas de pandeo, se emplean con frecuencia aceros de 6000 kg/cm2 y para presfuerzo hasta de 20,000 kg/cm2. La continuidad entre los distintos componentes de la estructura no es tan fácil de lograr como en el concreto reforzado, y el diseño de juntas, soldadas o atornilladas en la actualidad, requiere de especial cuidado para que sean capaces de transmitir las solicitaciones que implica su funcionamiento estructural.

Por ser un material de producción industrializada y controlada, las propiedades estructurales del acero tienen generalmente poca variabilidad. Coeficientes de variación del orden de 10 por ciento son típico para la resistencia y las otras propiedades. Otra ventaja del acero es que su comportamiento es perfectamente lineal y elástico hasta la fluencia, lo hace más fácilmente predecible la respuesta de las estructuras de este material. La alta ductilidad del material permite redistribuir concentraciones de esfuerzos. Las extraordinarias cualidades estructurales del acero, y especialmente su alta resistencia en tensión, han sido aprovechadas estructuralmente en una gran variedad de elementos y materiales compuestos, primero entre ellos el concreto reforzado y el presforzado; además en combinación con madera, plásticos, mampostería y otros.

La posibilidad de ser atacado por la corrosión hace que el acero requiera protección y cierto mantenimiento en condiciones ambientales severas. El costo y los problemas que se originan por  este aspecto son suficientemente importantes para que inclinen la balanza hacia el uso de concreto  reforzado en algunas estructuras que deben quedar expuestas a la intemperie, como los puentes y ciertas obras marítimas, aunque en acero podría lograrse una estructura más ligera y de menor costo inicial.

Existe una gran variedad de otros materiales que llegan a emplearse para fines estructurales, pero cuya aplicación a la fecha ha sido muy limitada. El aluminio tiene excelente resistencia, pero su módulo de elasticidad relativamente bajo y su costo impiden su utilización en la mayoría de las estructuras civiles, aunque no en estructuras especiales en que su bajo peso representa una ventaja decisiva, como en los aviones y en los muebles. Se llagó a pensar que los plásticos, en un gran numero de modalidades, llegarían a constituir un material estructural preponderante; sin embargo, su alto costo y su susceptibilidad al fuego han limitado grandemente su desarrollo en este sentido. La resina reforzada con fibra de vidrio ha tenido algunas aplicaciones estructurales importantes en las  que se ha aprovechado su moldeabilidad, ligereza, alta resistencia a tensión y costo razonable. Es de  esperarse que en el futuro se desarrollen y popularicen materiales diferentes; sin embargo, la tendencia desde hace varias décadas ha sido hacia el mejoramiento de las propiedades de los materiales existentes, más que hacia el desarrollo de materiales radicalmente diferentes.

No hay comentarios:

Publicar un comentario