martes, 10 de junio de 2014

CARGA AXIAL - DISEÑO DE ESTRUCTURAS

La compresión pura es lo que conocemos como “carga axial”, es decir una fuerza que se aplica a un miembro estructural exactamente en coincidencia con su centroide o eje principal. En este caso la tendencia del elemento es a encojerce hasta fallar; es decir, cundo se desquebraja en la dirección de los esfuerzos aplicados. Pero en la realidad, esto nunca sucede, por dos circunstancias. En primer lugar, porque los el ejes o centriodes de la carga, y del elemento resistente nunca coinciden, en vista de que el proceso constructivo de los elementos o de montaje de éstos, se puede describir como bastante imperfecta. En segundo lugar, porque la un elemento sujeto a compresión como una columna, difícilmente esta solo, siempre esta interactuando con otros elementos constructivos, que al funcionar como sistema, le transmiten esfuerzos de flexión. El simple hecho de que los ejes de carga no coincidan, produce necesariamente un momento de volteo, que provoca lo que conocemos como pandeo. Aunque éste último no únicamente depende de las excentricidades de la carga respecto al elemento resistente, sino también respecto a la relación de esbeltez del miembro. Es decir, entre mayor sea el largo del elemento respecto a su ancho, mayor es la posibilidad de que este elemento sufra pandeo, o lo que conocemos como pandeo local.


Fórmulas

1. Concreto simple 



2. Concreto con refuerzo longitudinal y recubrimiento 


En donde: 0.85 es el factor de esbeltez para columnas rectangulares o helicoidales. Es decir, es la posibilidad de que la columna se pandee y falle antes de alcanzar su resistencia máxima. Esta posibilidad es del 15%, por esta razón todas la ecuaciones se multiplican por 0.85. En el caso de columnas rectangulares, el refuerzo transversal (estribos) no se considera dentro de la resistencia de los elementos, ya que no alcanzan a confinar el nucleo de concreto de la columna; lo cual no sucede así con las helicoidales, en estas, la helice si llega o confinar el centro de la columna y aumenta bastante su resistencia.

3.  Concreto simple con refuerzo helicoidal, sin recubrimiento


4. Concreto con refuerzo longitudinal y helicoidal, con recubrimiento. (Se elige el menor de los resultados de las siguientes ecuaciones)


Para las columnas helicoidales se debe verificar que el refuerzo helicoidal, este lo suficientemente ancho y separado entre sí para funcionar confinando el núcleo de concreto. Esto se verifica serciorandose que la relación de refuerzo helicoidal  (Ps) no sea menor que los resultados de las dos siguientes ecuaciones:


En caso de que Ps sea mayor que cualquiera de los resultados de las anteriores ecuaciones se debe aumentar el diámetro del acero utilizado para la hélice, disminuir la separación de la hélice (s), o ambas, hasta que se cumpla con la regla.

lunes, 2 de junio de 2014

El Dimensionamiento de Elementos de Concreto Reforzado

El procedimiento de dimensionamiento tradicional, basado en esfuerzos de trabajo, consiste en determinar los esfuerzos correspondientes a acciones interiores obtenidas de un análisis elástico de la estructura, bajo sus supuestas acciones de servicio. Estos esfuerzos se comparan con esfuerzos permisibles, especificados como una fracción de las resistencias del concreto y del acero. Se supone
que así se logra un comportamiento satisfactorio en condiciones de servicio y un margen de seguri-
dad razonable.

El factor de seguridad de los elementos de una estructura dimensionados por el método de esfuerzos de trabajo no es uniforme, ya que no puede medirse en todos los casos el factor de seguridad por la relación entre las resistencias de los materiales y los esfuerzos permisibles. En otras palabras, la relación entre la resistencia del material y los esfuerzos de trabajo no siempre es igual a la relación entre la resistencia del elemento y su solicitación de servicio.

El procedimiento más comúnmente utilizado en la actualidad es el denominado método plástico, de resistencia o de resistencia última, según el cual los elementos o secciones se dimensionan para que tengan una resistencia determinada.

El procedimiento consiste en definir las acciones interiores, correspondientes a las condiciones de servicio, mediante un análisis elástico y multiplicarlas por un factor de carga, que puede  ser constante o variable según los distintos elementos, para así obtener las resistencias de dimensionamiento. El factor de carga puede introducirse también incrementando las acciones exteriores y realizando después un análisis elástico de la estructura. El dimencionamiento se hace con la hipótesis de  comportamiento inelástico.

lunes, 26 de mayo de 2014

Características, Acción y Respuesta de los Elementos de Concreto.

El objeto del diseño de estructuras consiste en determinar las dimensiones y características de los elementos de una estructura para que ésta cumpla cierta función con un grado de seguridad razonable, comportándose además satisfactoriamente una vez en condiciones de servicio. Debido a estos requisitos es preciso conocer las relaciones que existen entre las características de los elementos de una estructura (dimensiones, refuerzos, etc.), las solicitaciones que debe soportar y los efectos que dichas solicitaciones producen en la estructura. En otras palabras, es necesario conocer las características acción-respuesta de la estructura estudiada.

Las acciones en una estructura son las solicitaciones a que puede estar sometida. Entre éstas se  encuentran, por ejemplo, el peso propio, las cargas vivas, las presiones por viento, las aceleraciones por sismo y los asentamientos. La respuesta de una estructura, o de un elemento, es su comportamiento bajo una acción determinada, y puede expresarse como deformación, agrietamiento, durabilidad, vibración. Desde luego, la respuesta está en función de las características de la estructura, o del elemento estructural considerado.

Si se conocen las relaciones para todas las combinaciones posibles de acciones y características  de una estructura, se contará con una base racional para establecer un método de diseño. Este tendrá por objeto determinar las características que deberá tener una estructura para que, al estar sometida a ciertas acciones, su comportamiento o respuesta sea aceptable desde los puntos de vista de seguridad frente a la falla y de utilidad en condiciones de servicio.

En los procedimientos de diseño, el dimensionamiento se lleva a cabo normalmente a partir de las aciones interiores, calculadas por medio de un análisis de la estructura. Debe notarse que, para diseñar satisfactoriamente no siempre es necesario obtener las acciones interiores inducidas por las exteriores.

Las principales acciones interiores que actúan en las  estructuras las podemos enumerar en: a)  compresión, b) tensión, c) torsión y, d) cortante. La compresión en elementos estructurales casi nunca se presenta sola, sino con tensión, combinación a la que se le denomina flexión; y para térmi- nos de análisis a la compresión sola se le denomina carga axial: asimismo, en los diversos elementos estructurales se pueden presentar muchas combinaciones.


En el siguiente cuadro se enumeran los elementos estructurales más importantes y las acciones principales que se presentan en ellos:


La primera condición que debe satisfacer un diseño es que la estructura resultante sea  lo suficientemente resistente. En términos de las características acción-respuesta, se puede definir la resistencia de una estructura o elemento a una acción determinada como el valor máximo que dicha acción puede alcanzar. Una vez determinada la resistencia a cierta acción, se compara este valor máximo con el valor correspondiente bajo las condiciones de servicio. De esta comparación se origina el concepto de factor de seguridad o factor de carga. De un modo rudimentario, éste puede definirse como el cociente entre la resistencia y el valor estimado de la acción correspondiente en condiciones de servicio.

Para tener una idea más clara sobre la relación acción-respuesta de los elementos estructurales,  en la siguiente ilustración se presenta la gráfica de esfuerzo deformación de una viga en voladizo. Se pueden distinguir cuatro etapas en el comportamiento del voladizo:

a) Una etapa inicial elástica, en la que las cargas son proporcionales a las deformaciones. Es fre- cuente que bajo las condiciones permanentes de servicio (excluyendo las cargas de corta duración  como el viento o sismo), la estructura se encuentre en esta etapa. La carga de servicio se ha marcado  en la figura como Ps y la deformación correspondiente como as.
b) Una tapa intermedia en la que la relación carga-deformación ya no es lineal, pero en que la  carga va creciendo.


c) Una etapa plástica, en la que se producen deformaciones relativamente grandes para incrementos pequeños o nulos de las cargas. La resistencia Pr, se encuentra en esta etapa. Debido a la  forma de la curva, es difícil establecer cuál es la deformación correspondiente a la resistencia.

De la ilustración se puede definir el factor de seguridad como el cociente Pr/Ps. La estructura  tendrá una resistencia adecuada, si este factor es mayor que un valor predeterminado considerado  como aceptable.

lunes, 19 de mayo de 2014

DISEÑO DE ESTRUCTURAS DE CONCRETO

Una construcción u obra puede concebirse como un sistema, entendiéndose por sistema un conjunto de subsistemas y elementos que se combinan en forma ordenada para cumplir con una determinada función. Un edificio, por ejemplo, está integrado por varios subsistemas: el de los elementos arquitectónicos para encerrar espacios, el estructural, las instalaciones eléctricas, las sanitarias, las de acondicionamiento de aire y los elevadores, Todos estos subsistemas interactúan de manera que en su diseño debe tenerse en cuenta la relación que existe entre ellos. Así, no puede confiarse que el lograr la solución óptima para cada uno de ellos conduzca a la solución óptima para el edificio en su conjunto.

Una estructura puede concebirse como un sistema también, es decir, como un conjunto de partes o componentes que se combinan en forma ordenada para cumplir una función dada, que puede ser: salvar un claro, como en los puentes; encerrar un espacio, como sucede en los distintos tipos de edificios; o contener un empuje, como en los muros de contención, tanques o silos. La estructura  debe cumplir la función a la que está destinada con un grado razonable de seguridad y de manera  que tenga un comportamiento adecuado en las condiciones normales de servicio. Además, deben  satisfacerse otros requisitos, tales como mantener el costo dentro de límites económicos y satisfacer determinadas exigencias estéticas.

DISEÑO DE ESTRUCTURAS DE CONCRETO

lunes, 12 de mayo de 2014

ACERO DE REFUERZO EN LA CONSTRUCCION

El acero para reforzar concreto se utiliza en distintas formas; la más común es la barra o varilla que se fabrica tanto de acero laminado en caliente, como de acero trabajado en frío. Los diámetros usuales de barras producidas en México varían de ¼ pulg. a 1 ½ pulg. (algunos productores han fabricado barras corrugadas de 5/16 pulg, 5/33 pulg y 3/16 pulg.) En otros países se usan diámetros aún mayores. Todas las barras, con excepción del alambrón de ¼ de pulg, que generalmente es liso, tienen corrugaciones en la superficie para mejorar su adherencia al concreto. Generalmente el tipo de acero se caracteriza por el límite de esfuerzo de fluencia. En México se cuenta con una variedad  relativamente grande de aceros de refuerzo. Las barras laminadas en caliente pueden obtenerse con límites de fluencia desde 2300 hasta 4200 kg/cm2. El acero trabajado en frío alcanza límites de fluencia de 4000 a 6000 kg/cm2. Una propiedad importante que debe tenerse en cuenta en refuerzos con detalles soldados es la soldabilidad. La soldadura de aceros trabajados en frío debe hacerse con cuidado. Otra propiedad importante es la facilidad de doblado, que es una medida indirecta de ductilidad y un índice de su trabajabilidad.

Se ha empezado a generalizar el uso de mallas como refuerzo de losas, muros y algunos elementos prefabricados. Estas mallas están formadas por alambres lisos unidos por puntos de soldadura en  las intersecciones. El acero es del tipo trabajado en frío, con refuerzos de fluencia del orden de 5000  kg/cm2. El espaciamiento de los alambres varía de 5 a 40 cm y los diámetros de 2 a 7 mm, aproxi- madamente. En algunos países, en lugar de alambres lisos, se usan alambres con algún tipo de irregularidad superficial, para mejorar la adherencia. El acero que se emplea en estructuras presforzadas es de resistencia francamente superior a la de los aceros descritos anteriormente. Su resistencia última varía entre 14000 y 22000 kg/cm2  y su límite de fluencia, definido por el esfuerzo correspondiente a una deformación permanente de 0.002, entre 12000 y 19000 kg/cm2.

lunes, 5 de mayo de 2014

CONCRETO - DISEÑO DE ESTRUCTURAS

Definición. El concreto es una mezcla de cemento, agregados inertes (por lo general grava y  arena) y agua, la cual se endurece después de cierto tiempo de mezclado. Los elementos que componen el concreto se dividen en dos grupos: activos e inertes. Son activos, el agua y el cemento a cuya cuenta corre la reacción química por medio de la cual esa mezcla, llamada “lechada”, se endurece (fragua) hasta alcanzar un estado de gran solidez.

Los elementos inertes (agregados) son la grava y la arena, cuyo papel fundamental es formar el  “esqueleto” del concreto, ocupando gran parte del volumen del producto final, con lo cual se logra abaratarlo y disminuir notablemente los efectos de la reacción química del fraguado: la elevación de temperatura y la contracción de la lechada al endurecerse.

El agua que entra en combinación química con el cemento es aproximadamente un 33% de la cantidad total y esa fracción disminuye con la resistencia del concreto. En consecuencia, la mayor parte del agua de mezclado se destina a lograr fluidez y trabajabilidad de la mezcla, coadyuvando a la “contracción del fraguado” y dejando en su lugar los vacíos correspondientes, cuya presencia influye negativamente en la resistencia final del concreto.

Cemento. Salvo casos muy especiales, en general se usa el cemento portland definido por la Norma Oficial Mexicana (NOM) como el “material que proviene de la pulverización del producto obtenido por fusión incipiente de materiales arcillosos y calizos que contengan óxidos de calcio, silicio, aluminio y fierro en cantidades convenientemente calculadas y sin más adición posterior que yeso sin calcinar y agua, así como otros materiales que no excedan del 1% en peso del total y que no sean nocivos para el comportamiento posterior del cemento”. La composición química del cemento portland es muy compleja; pero puede definirse esencialmente como un compuesto de cal, alúmina y sílice. Los componentes fundamentales son: el aluminiato tricálcico, el silicato tricálcico, el silicato dicálcico y el ferro aluminio tricálcico.

Clases de cemento portland. En México se fabrican cinco clases o tipos de cemento portland:

Tipo I: Normal, destinado a usos generales: estructuras, pavimentos, bloques, tubos.

Tipo II: Modificado, adecuado en general para obras hidráulicas por su calor de hidratación moderado y su regular resistencia a los sulfatos.

Tipo III: Rápida resistencia alta, recomendable para sustituir al tipo I en obras de emergencia o cuando de desee retirar pronto las cimbras para usarlas un número mayor de veces; adquiere una determinada resistencia, en igualdad de condiciones, en la tercera parte del tiempo que necesita para ello el cemento tipo I. Sin embargo, la resistencia final es la misma que la correspondiente al cemento normal.

Tipo IV: De bajo calor, adecuado para la construcción de grandes espesores (presas) porque su calor de hidratación es muy reducido a tenor de su resistencia que se adquiere lentamente.

Tipo V: De alta resistencia a los sulfatos, recomendable en cimentaciones expuestas a la acción de aguas sulfatadas y agresivas.

Se produce también, el cemento portland blanco, de características semejantes al tipo I, usado en construcciones urbanas cuando lo demandan razones arquitectónicas.

Peso volumétrico del concreto. La densidad del cemento Portland es muy elevada; su peso volumétrico depende de la compactación, pero puede aceptarse un valor medio de 1500 kg/m3, el cual concuerda con la costumbre de suponer un volumen de 33 litros para el saco de cemento de 50 kg. El peso volumétrico del concreto común es variable de acuerdo con la densidad de los agregados y  puede estimarse entre 2200 y 2500 kg/m3, como promedio, lo que lo coloca entre los materiales de construcción pesados en relación con la intensidad de las cargas que soporta, especialmente cuando trabaja a flexión.

La producción de concretos ligeros ha sido preocupación constante de los investigadores, quienes en un principio dirigieron su interés hacia los agregados de poco peso: tezontles y piedras pómez, los cuales presentan la dificultad de sus cualidades higroscópicas que hacen punto menos que imposible la correcta dosificación del agua de mezclado, de la que depende la resistencia del concreto.

La dificultad que presentan los agregados ligeros parece haber sido superada con los inclusores de aire, los cuales producen numerosas burbujas en el seno de la mezcla disminuyendo su peso volumétrico y aumentando al mismo tiempo su trabajabilidad, cohesión y resistencia a la acción de los sulfatos y las heladas. Los inclusores de aire son productos químicos, generalmente compuestos de fino polvo de aluminio o zinc, que se agregan en la mezcladora o que vienen ya añadidos en el propio cemento.

Fraguado del concreto. Cuando el cemento y el agua entran en contacto, se inicia una reacción química exotérmica que determina el paulatino endurecimiento de la mezcla. Dentro del proceso general de endurecimiento se presenta un estado en que la mezcla pierde apreciablemente su plasticidad y se vuelve difícil de manejar; tal estado corresponde al fraguado inicial de la mezcla. A medida que se produce el endurecimiento normal de la mezcla, se presenta un nuevo estado en el cual la consistencia ha alcanzado un valor muy apreciable; este estado  se denomina fraguado final. La  determinación de estos dos estados, cuyo lapso comprendido entre ambos se llama tiempo de fraguado de la mezcla, es muy poco precisa y sólo debe tomarse a título de guía comparativa. El tiempo de fraguado inicial es el mismo para los cinco tipos de cemento enunciados y alcanza un valor de 45 a 60 minutos, el tiempo de fraguado final se estima en 10 horas aproximadamente. En resumen, puede definirse como tiempo de fraguado de una mezcla determinada, el lapso necesario para que la mezcla pase del estado fluido al sólido.

Así definido, el fraguado no es sino una parte del proceso de endurecimiento. Es necesario colocar la mezcla en los moldes antes de que inicie el fraguado y de preferencia dentro de los primeros 30 minutos de fabricada. Cuando se presentan problemas especiales que demandan un tiempo adicional para el transporte del concreto de la fábrica a la obra, se recurre al uso de “retardantes” del fraguado, compuestos de yeso o de anhídrido sulfúrico; de igual manera, puede acelerarse el fraguado con la adición de sustancias alcalinas o sales como el cloruro de calcio.

Endurecimiento del concreto. El endurecimiento del concreto depende a su vez del endurecimiento de la lechada o pasta formada por el cemento y el agua, entre los que se desarrolla una reacción química que produce la formación de un coloide “gel”, a medida que se hidratan los componentes del cemento. La reacción de endurecimiento es muy lenta, lo cual permite la evaporación de parte del agua necesaria para la hidratación del cemento, que se traduce en una notable disminución de la resistencia final. Es por ello que debe mantenerse húmedo el concreto recién colado, “curándolo”. También se logra evitar la evaporación del agua necesaria para la hidratación del cemento, cubriendo el concreto recién descimbrado con una película impermeable de parafina o de productos especiales que se encuentran en el mercado desde hace varios años.

Proporcionamiento del concreto. Cuando la relación agua-cemento se mantiene constante, la resistencia del concreto de la mezcla también se mantiene constante. En consecuencia, si se fabrica una mezcla de concreto con agregados limpios, sanos y suficientemente duros, la resistencia a la  comprensión del concreto dependerá exclusivamente de la resistencia de la lechada, es decir, de la relación agua-cemento empleada. El proporcionamiento de una mezcla de concreto se reduce a elegir una relación agua-cemento para una resistencia dada y, enseguida, a definir la graduación (granulometría) de los agregados para que satisfaga dos requisitos: que la mezcla sea trabajable y que el volumen de vacíos entre los agregados, destinado a ser ocupado por el cemento y el agua, sea el menor posible. La primera condición hace posible el manejo delconcreto; la segunda consigue la fabricación de la mezcla más económica.

Permeabilidad del concreto. El concreto normal es un material permeable. Los vacíos que dejan los agregados no son llenados totalmente por la mezcla de agua y cemento y además, el agua de mezclado, la cual se utiliza en gran parte para conseguir una adecuada trabajabilidad del concreto,  se evapora en los primeros meses del colado dejando huecos más o menos numerosos.

De acuerdo con estos hechos, se podrá disminuir notablemente la permeabilidad del concreto si  se atienden los siguientes aspectos de su fabricación por orden de importancia:

a) Emplear mezclas secas, de baja relación agua-cemento. Los concretos más resistentes son los menos permeables.

b) Lograr una granulometría con el mínimo de vacíos posible.

c) Colar el concreto con el uso discreto de vibradores que compacten la mezcla y expulsen parte  de las burbujas de aire.

Las anteriores recomendaciones pueden no ser suficientes para lograr un concreto prácticamente  impermeable en la construcción de tanques de almacenamiento u otras estructuras semejantes; en tales casos es aconsejable terminar el colado con una capa de cemento y arena fina de unos dos centímetros de espesor, o recurrir al empleo de polvos muy finos (tierras diatomeacas) o sustancias que aumenten la trabajabilidad de la mezcla permitiendo reducir la cantidad de agua del colado. La  impermeabilidad total de los tanques de almacenamiento puede lograrse colocando una película de  plástico líquido, una vez que se han secado suficientemente las paredes.

martes, 29 de abril de 2014

SISTEMAS ESTRUCTURALES PARA EDIFICIOS DE VARIOS PISOS

Se trata aquí especialmente el sistema vertical resistente de los edificios, en particular en lo referente a su eficiencia para resistir las cargas laterales de viento o sismo, cuya importancia crece a medida que aumenta la altura del edificio. Lo ideal sería que el sistema estructural que se requiere y que representa la solución óptima para resistir las cargas verticales de diseño, resultase suficiente para resistir también sin modificación alguna también las cargas laterales contando para ello con la reducción en los factores de seguridad que admiten  las normas de diseño para resistir esta última condición de carga, por ser de tipo accidental. Sin embargo, esto llega a ser cierto solo en edificios de pocos pisos y en zonas donde las acciones de diseño por sismo o viento son moderadas. A medida que crece la altura, las modificaciones para resistir cargas laterales son mayores. El problema puede plantearse como el de sobreprecio que hay que pagar para la resistencia a cargas laterales, el cual aumenta con el número de pisos hasta que, para edificios muy altos, este es el aspecto que domina la elección del sistema estructural más apropiado.

El sistema estructural debe permitir proporcionar resistencia a las fuerzas laterales y rigidez para mantener las deformaciones ante esas cargas dentro de los límites tolerables. El segundo aspecto suele ser más decisivo que el primero para definir el esquema estructural apropiado. Como ya se apuntó anteriormente, no puede separarse de manera tajante el estudio del sistema de soporte vertical del relativo a los sistemas de piso de un edificio, ya que el trabajo conjunto es el que define el comportamiento y la eficacia, especialmente en lo que se refiere a las cargas laterales. Por ello, aunque el énfasis se ponga en el sistema vertical, se hará mención de la interacción de este sistema con el sistema de piso.

Los primeros sistemas estructurales empleados para construcciones de más de un piso fueron probablemente de madera; sin embargo, pocas veces las construcciones de este tipo han rebasado los dos niveles y no por limitaciones de tipo estructural, ya que en este aspecto podría fácilmente superarse la decena de pisos. El uso de la madera para edificios de varios pisos ha sido limitado por la seguridad contra incendio.

Los muros de carga de mampostería han constituido el sistema estructural clásico para edificios de varios niveles, asociados a sistemas de piso de madera o de bóveda de mampostería. La limitación de este sistema se debe a que su escasa resistencia en compresión y en tensión obliga a una lata densidad de muros con espesores considerables. Por ello la estructuración es aceptable solo cuando el uso de la construcción implica la subdivisión del espacio en áreas pequeñas, como en edificios de vivienda y hospitales. En la actualidad la construcción a base de muros de carga de mampostería se emplea usualmente para edificios hasta cerca de cinco pisos, aunque existen ejemplos de construcciones de 15 o más pisos con muros de mampostería de piezas de alta resistencia y con altas cantidades de refuerzo.

El material más apropiado para la estructuración con muros de carga es el concreto, sea en la modalidad de concreto colado en el lugar o en la de paneles prefabricados, esta muy popular en diversos países. La mayor limitación de esta solución a base de muros de carga es la falta de flexibilidad en el uso del espacio interior de la construcción. La distribución de áreas no puede modificarse en el tiempo, debido a que los muros tienen función estructural y la distribución de éstos no puede alterarse de un piso a otro. Desde el punto de vista estructural las ventajas básicas son, como se mencionó en temas anteriores, la transmisión de cargas verticales por fuerzas esencialmente axiales y la gran rigidez ante cargas laterales que se logra por la alta densidad de muros en ambas direcciones.

Solo cuando se comenzó a utilizar el acero con fines estructurales en los edificios, se llagaron a obtener espacios libres interiores de dimensiones apreciables y con posibilidad de adaptarlos a diferentes usos, lo que proporcionó el inicio de la construcción de los edificios realmente altos. En un principio las vigas y columnas de acero no formaban propiamente un marco rígido, ya que no se construían con conexiones capaces de transmitir momentos. Estos edificios, hasta de un par de decenas de pisos, contaban con la contribución de algunas paredes divisorias y de fachada (supuestamente no estructurales) para lograr cierta rigidez y resistencia ante cargas laterales. Sin embargo, solo la adopción del marco rígido en la primera década de este siglo permitió superar esas alturas y llegar a edificaciones del orden de los 50 pisos. El marco rígido de acero fue el preferido para los rascacielos, por la rapidez de construcción y por la poca área de columnas que se tiene en las plantas. Algunas décadas más tarde se comenzaron a usar los marco de concreto para edificios hasta de 20 a 30 pisos, aprovechando el menor costo que en muchos países se tenía con este sistema estructural. Sin embargo, la pérdida progresiva de área útil que se tenía por las dimensiones de columnas cada vez mayores a medida que aumentaba el número de pisos, limitó el empleo de este sistema y dio lugar al desarrollo de otros que no tuvieran esa deficiencia.

En los edificios muy altos, destinados principalmente a oficinas, la necesidad de grandes espacios libres se vuelve crítica en todos o al menos en algunos de los pisos. Por otra parte, el marco es estructura que resiste carga laterales esencialmente por flexión de sus miembros, lo que lo hace poco, especialmente cuando los claros son considerables. Lo anterior ocasiona que la estructuración a base de marcos no sea muy eficiente para edificios altos. A medida que crece el número de pisos, es mayor la cantidad en que hay que incrementar las dimensiones de las vigas y columnas, sobre las necesidades para resistir las caras y rigidez necesarias ante cargas laterales. El sobrepeso que hay que pagar para resistir las cargas horizontales es considerable. No es posible fiar un límite general para el número de pisos que es económicamente conveniente estructurar con marcos. En zonas poco expuestas a sismos o huracanes este límite se encuentra en poco más de 20 pisos. En zonas de alto riesgo sísmico es probablemente menor de 10 pisos.

La forma más sencilla de rigidizar un marco ante cargas laterales sin perder todas sus ventajas, es colocar en algunas de sus crujías un contraventeo diagonal o ligarlos a algún muro de rigidez de mampostería (para edificios no muy altos) o de concreto. Esta ha sido la forma más popular de rigidizacón tanto para marcos de concreto como de  acero. Como se expuso anteriormente, ambos casos pueden visualizarse como una viga vertical de gran peralte y en voladizo. Esta gran rigidez cuando la relación altura a longitud del muro o de la crujía contraventeada es relativamente pequeña. En estos casos el muro absorbe prácticamente la totalidad de las cargas laterales, mientras que el diseño del marco queda regido por la resistencia a cargas verticales únicamente.

Cuando la relación altura longitud del marco crece, se reduce muy rápidamente su rigidez y se presenta una interacción básicamente compleja en el muro. Existe una diferencia importante en que los dos tipos de sistemas se deforman lateralmente. En un marco la deformación de un piso relativa al inferior (desplazamiento relativo de entrepiso) es proporcional a la fuerza lateral total aplicada arriba de dicho entrepiso (cortante de entrepiso), de manera que el desplazamiento relativo de entrepiso tiende a ser mayor en los pisos inferiores que en los superiores (a menos que las dimensiones de las secciones se reduzcan radicalmente con la altura). En el muro esbelto, por el contrario, los desplazamientos relativos crecen en los pisos superiores, ya que las deformaciones de cortante dejan de ser significativas y la deformidad del muro es como la de una viga en voladizo.

Para que un muro rigidice una estructura de manera efectiva, su condición debe tener un momento de inercia tal que evite que se presente el fenómeno descrito anteriormente. En los edificios de pocas decenas de pisos es relativamente sencillo disponer de uno o más muros que cumplen esta condición, sea en el interior de la planta o en la fachada o, en forma más eficiente, aprovechando un núcleo que encierra ductos de servicios (escaleras, elevadores, instalaciones) que por su sección cerrada proporcione rigidez. Por ello la estructuración de marcos con muros de rigidez es la solución más común en edificios de esta índole, en zonas donde se deben resistir fuerzas laterales significativas. Un aspecto importante es que la ubicación de los muros en planta sea simétrica para que no se presenten torsiones en la respuesta ante cargas laterales.

Existen diversos procedimientos para aumentar la rigidez de los muros cuando la altura del edifico es considerable. Uno consiste en acoplar dos o más muros a través de vigas de buen peralte en cada piso, las que restringen los giros de los muros en cada nivel y tienden a hacer trabajar los muros que acoplan como una unidad. La eficiencia de los muros acoplados depende de la rigidez de la viga que los conecta, la cual esta sujeta a fuerzas cortantes considerables y requiere un cuidado especial en su diseño y detallado.

En lugar de acoplar los muros en todos los pisos puede optarse por hacerlo solo en algunos de ellos mediante una viga cuyo peralte sea el de todo un entrepiso a través del cual se cancela localmente el paso. Se obtiene lo que se denomina un macro-marco, ya que los muros en lugar de comportarse como voladizos se deforman como marcos de uno o más niveles según el numero de vigas de acoplamiento que se coloquen.

En otra modalidad, las vigas de gran peralte del caso anterior, en lugar de conectar entre sí dos o más muros, conectan un solo muro, o más generalmente un gran núcleo central, con las columnas de los marcos en las cuales, al tratar de flexionarse el muro, se introducen cargas axiales que tienden a equilibrar el momento flexionante en cada piso, incrementando notablemente la rigidez del conjunto. La eficiencia es mayor si se colocan estas vigas de gran peralte en varios pisos.

En edificios de muchas decenas de pisos ya no es suficiente la rigidez que pueden proporcionar algunos muros o un núcleo central, y la necesidad de contar con el mayor espacio posible en el interior lleva naturalmente a tratar de aprovechar la fachada para dar rigidez ante cargas laterales. La solución más eficiente es conraventear todo el perímetro exterior de la construcción de manera que actúe como un gran tubo, aprovechando la máxima sección disponible. Un funcionamiento similar se obtiene si en lugar de tener un arreglo triangulado de los elementos de fachada, se tiene una retícula formada por columnas muy poco espaciadas y por vigas de piso de alta rigidez, de manera que las deformaciones de flexión de las columnas sean pequeñas y el trabajo de estas sea fundamentalmente a carga axial. En este sistema, llamado comúnmente de tubo, se aprovechan las columnas de fachada integrándolas a la ventanería y reduciendo mucho el costo de ésta. Este ha sido el sistema estructural más popular en los últimos 20 años para los mayores rascacielos construidos en EEUU, hasta superar los 100 pisos. Existen diversas variantes que tienden a obtener una rigidez todavía mayor, como la de acoplar el tubo en un núcleo central de muros de concreto (tubo en tubo) o de subdividir la planta en una serie de tubos interiores (tubo subdividido en celdas). Incluso en el edificio del Banco de Hong Kong de Norman Foster se utiliza un sistema de tubo en fachada unido a un mega mástil central de acero.

Otra forma de rigidizar las fachadas es formando marcos de elementos muy robustos, de manera  que las deformaciones de flexión sean muy reducidas. En este caso el gran tamaño de las vigas y las  columnas no interfiere con el uso del espacio interior, aunque presenta cierta dificultad para lograr  una solución aceptable.

Un problema común a todos estos sistemas que se basan en rigidizar la fachada, es la interferencia con el funcionamiento de la planta baja, en la cual hay casi siempre la exigencia de grandes claros en la fachada para los accesos. Este problema se suele resolver empleando uno de los pisos inferiores como viga “Virendeel” para aumentar sustancialmente el espaciamiento entre columnas debajo de ellas. Esta solución es debatible desde el punto de vista del comportamiento sísmico. 

Entrada destacada

Hidratación del Cemento y Curado del Concreto

Hidratación del cemento y curado del concreto El curado del concreto no es simplemente una cuestión de endurecimiento del concreto a medida ...

Entradas populares