miércoles, 18 de julio de 2012

Zapatas flexibles.


En este caso el momento flector sobre la sección de referencia antes descrita es:


Con los significados anteriormente indicados.

En cuanto los anclajes, si se hacen por adherencia se deberá proceder del siguiente modo:(también es aplicable a zapatas rígidas con v>h ).


expresando todas las dimensiones en mm.

El anclaje también puede realizarse, como en el caso de zapatas rígidas, con soldadura de una barra transversal al final de la armadura principal.

En el caso de zapatas cuadradas la disposición de armaduras será idéntica en ambas direcciones. En el caso de zapatas rectangulares la armadura principal (paralela al lado L) se distribuye uniformemente. La armadura paralela al lado menor se reparte de forma que la armadura transversal necesaria As.tr se distribuya en una proporción


en un ancho B a ambos lados del soporte y el resto uniformemente en los dos extremos, aunque en la práctica se mantiene la misma separación de los redondos.

Nunca una dirección tendrá una armadura inferior al 20% por unidad de anchura respecto a la ortogonal, por lo que en el caso de que la armadura transversal sea exclusivamente una armadura de reparto, se tomará:
Como es razonable elegir los redondos de la armadura de reparto del mismo diámetro que las barras de la armadura longitudinal, y teniendo en cuenta que la relación  pésima de separaciones entre redondos es 10 cm y 30 cm, se tomará como longitud neta de anclaje para la armadura transversal lb.neta.tr el valor:

Como recomendaciones indicaremos que el espesor mínimo para zapatas de hormigón armado debe ser 25 cm y para zapatas de hormigón en masa 35 cm.

La EHE recomienda utilizar redondos tal que   12 <=  Φ <=  (es preferible  no superar el diámetro 20). La separación entre dichos redondos será tal que   10 <= S <= 30   cm. Las armaduras obtenidas se prolongarán sin reducción de un borde a otro de la zapata.


Asimismo, se debe disponer de una capa de hormigón de limpieza en  la base del cimiento (que no se considera en el cálculo) de espesor 10 cm.

Como se ha indicado anteriormente, si la zapata se hormigona contra el terreno (que es lo habitual), el recubrimiento lateral será de 70 mm.

En el caso de zapatas excéntricas se calcula la armadura correspondiente a cada vuelo (rígida o flexible) y se prolonga en ambos sentidos con la armadura más resistente.

Con respecto a las longitudes de anclaje en las zapatas excéntricas, la longitud L que figura en las fórmulas debe tomarse  como el doble de la longitud del vuelo que estamos considerando.

Aunque la EHE no establece cuantías geométricas mínimas, es aconsejable fijar un valor mínimo a criterio del proyectista por razones de fragilidad, que aconseja sea no inferior al 1,5 .

martes, 3 de julio de 2012

Zapatas rígidas.


Se colocan basándose en suponer bielas comprimidas de hormigón cosidas inferiormente por un tirante CD.



                                                Figura 19. Red de isostáticas de una zapata aislada.

Según esta hipótesis la armadura principal para resistir la tracción será:


                       Figura 20. Modelización de una zapata rígida según el método de bielas y tirantes.




Si las tensiones de cálculo no se han mayorado previamente, será necesario mayorar el valor de Td.

En cuanto a los anclajes deberá utilizarse de la siguiente manera si  se hace por adherencia.



siendo lb.neta la longitud neta de anclaje correspondiente a la posición I.

Todas las dimensiones se expresarán en mm.

El valor 70 mm se debe al recubrimiento mínimo aconsejado por la EHE para estructuras en contacto directo con el terreno.

También se puede anclar con armadura en prolongación recta, soldando al final una barra del mismo diámetro transversalmente.

La comprobación de las bielas no es necesario salvo que la tensión sobre el terreno no supere los 1.5 N/mm2 (15 kp/cm^2).
 

lunes, 2 de julio de 2012

Calculos a Flexión: Zapatas Aisladas.


CALCULOS A FLEXION

Las tensiones que actúan sobre las zapatas son las que provienen de las cargas de
la estructura, sin contar el peso del cimiento ni el de las tierras o cargas uniformemente
repartidas que actúan directamente sobre él.

Como en el proceso de  comprobación de la estabilidad al hundimiento hemos
considerado los pesos antes citados, las tensiones para el cálculo de la flexión serán las
anteriormente obtenidas menos las tensiones uniformes producida por el peso propio del
cimiento y del terreno que soporta (éste en el caso de que se tenga seguridad que exista).

La tensión a descontar será:


El cálculo a flexión se realiza en cada dirección principal respecto una sección de eferencia S1 que está retrasada respecto el soporte (figura 16).

                                       Figura 16: Cálculo a flexión en zapatas aisladas.


siendo L’ la dimensión del soporte, a1 y b1 las dimensiones de la placa, y c el canto del perfil o perfiles metálicos del soporte.


                                     Figura 17: Vuelo de cálculo en una zapata con pilar metálico.

En el caso de reparto trapecial (figura 18) puede adoptarse una tensión media obtenida del siguiente modo:


A efectos de cálculo de momentos se toma:

                                          Figura 18: Tensiones de cálculo en reparto trapecial.

Como hemos indicado, el cálculo debe repetirse en dirección perpendicular al momento principal.


Para la determinación de las armaduras necesarias hay que distinguir dos métodos según sean zapatas rígidas o flexibles.

A) Zapatas rígidas:
B) Zapatas flexibles:

viernes, 29 de junio de 2012

Cálculo de la zapata Aislada como Elemento Estructural.


Clasificación de las zapatas según EHE.
                                          Figura 15: Clasificación de las zapatas según EHE.

Comprobaciones a realizar para cada tipo de zapatas

jueves, 28 de junio de 2012

Zapatas Aisladas: Comprobación a hundimiento.


La distribución de tensiones bajo una zapata no es uniforme ni igual según la rigidez de la zapata y la naturaleza del suelo, tal y como se puede ver en la figura 7.

                        Figura 7: Distintos casos de distribuciones de tensiones bajo una zapata.

En la práctica, para evitar cálculos complejos, se adoptan distribuciones uniformes o lineales. 

Pueden representarse los siguientes casos:




Corresponde a una distribución uniforme de tensiones con

Corresponde una distribución trapecial de tensiones (figura 8).

             Figura 8: Distribución trapecial de tensiones.          Figura 9: Distribución triangular de tensiones.

Correspondería una distribución triangular con una zona comprimida y una traccionada. Como no puede haber tracción entre el hormigón y el terreno se acepta que se produce una redistribución de tensiones de forma que se produzca un equilibrio de esfuerzos (figura 9).

En el caso de excentricidades respecto a dos ejes es muy útil el empleo del ábaco de la figura 10,  que recoge las excentricidades relativas

 Figura 10: Abaco para la comprobación de tensiones del terreno.

Es tendencia de los nuevos métodos de comprobación y fundamentalmente del Eurocódigo sustituir el bloque triangular, por un diagrama rectángular donde:

 
Figura 11. Diagrama rectangular de tensiones según EC-2


En algunos casos se utilizan zapatas con una excentricidad física del pilar para disminuir la excentricidad mecánica y así reducir las tensiones en el extremo de la zapata o incluso, si las excentricidades son pequeñas, conseguir un reparto uniforme de tensiones (figura 12).

                                   Figura 12: Reparto uniforme de tensiones al desplazar el soporte.

e es la excentricidad mecánica (e = M/N ) y  e’ la excentricidad física del pilar  especto al centro de la zapata. Si coinciden las excentricidades mecánica y física (e=e’)  el reparto de tensiones es uniforme, mientras que si  e es mayor que  e’ el reparto de  ensiones es triangular o trapecial.

                                           Figura 13: Zapata con excentricidad física del pilar.

En el caso de utilizar zapatas con excentricidad física del pilar (figura 13) se pueden utilizar las mismas fórmulas que se han expuesto anteriormente, con las siguientes variaciones:

Para la comprobación a hundimiento se utilizará una excentricidad e igual a: 

En el supuesto de que la excentricidad física se produzca en la misma dirección que la excentricidad mecánica (figura 14), la excentricidad e será igual a:

Figura 14: Excentricidades mecánica y física en la misma dirección. 

Esta solución no es aconsejable pues aumenta el reparto triangular, incrementando las tensiones en el extremo de la zapata y encareciendo su construcción.

En el caso de tener que adoptar esta disposición y se obtengan zapatas excesivamente grandes, es aconsejable el empleo de vigas centradoras, como en el caso de zapatas de medianería.
 

miércoles, 27 de junio de 2012

Zapatas Aisladas: Comprobación a deslizamiento.



Sólo a realizar en zapatas no arriostradas horizontalmente.

En el caso de terrenos arenosos:


En el caso de terrenos con cohesión:


martes, 26 de junio de 2012

Zapatas Aisladas: Comprobación a vuelco.





tomando este valor de 1.5 como coeficiente de seguridad. 

Algunos autores recomiendan no considerar el peso del terreno sobre el cimiento por ser un valor estabilizador que puede no existir accidentalmente.

lunes, 25 de junio de 2012

Cálculo de zapatas Aisladas: Comprobación de la estabilidad estructural.



Sea una zapata con las dimensiones y situación que se indica en la figura  6, sometida a unos esfuerzos en base de pilar N0, M0 y V0.

Estudiemos la superficie de contacto entre la zapata y el suelo (figura 6). En esta superficie actúa:




siendo γh y γt los pesos específicos aparentes del hormigón y del terreno respectivamente.

                                        Figura 6. Comprobación de la estabilidad estructural.

Habrá que realizar las comprobaciones a vuelco, a deslizamiento y a hundimiento.

domingo, 24 de junio de 2012

ASIENTOS DIFERENCIALES Y GENERABLES ADMISIBLES.



Los asientos admisibles son los asientos totales y diferenciales que puede soportar la estructura con sus forjados y tabiques, sin que se produzcan daños incompatibles con el servicio de la misma o en caso extremo su rotura.

Los asientos diferenciales se miden en función de la distorsión angular que se produce por la diferencia de asientos totales entre dos cimentaciones separadas una distancia determinada.

Como indicación en la tabla adjunta se señalan los asientos diferenciales admisibles para diferentes elementos constructivos y estructuras.


Para evitar los asientos diferenciales debe procurarse que la tensión del terreno bajo las diferentes cimentaciones sea la misma. No obstante, como el terreno no es homogéneo ni las dimensiones de las cimentaciones son constantes, siempre se producirán inevitablemente asientos diferenciales.

Como en la práctica los asientos diferenciales son función de los asientos totales, es por lo que se suele limitar el valor de éstos. Los asientos diferenciales según diversos autores oscilan entre los 2/3 y 3/4 del asiento máximo total.

La Norma NBE-AE-88 Acciones en la edificación limita los asientos totales según el tipo de estructura de acuerdo con la tabla 3.


El cálculo de los asientos totales, inmediatos y diferidos, se realiza mediante las teorías de Boussinesq, Newmark, Meynhof, etc, que pueden estudiarse en la literatura especializada y que escapa al contenido de este tema.



jueves, 21 de junio de 2012

CAPACIDAD DE CARGA DE LAS CIMENTACIONES SUPERFICIALES.



La capacidad de carga es de difícil evaluación, pues depende de diferentes factores como son:

a). De las características geotécnicas del terreno y dentro de ellas, principalmente del ángulo de rozamiento interno y de la cohesión del terreno.

b). De la estratificación de las diferentes capas de suelo y la profundidad del nivel freático.

c). Del nivel de cimentación.

d). De las dimensiones del cimiento.

e). Del tipo de carga (dirección, excentricidad, periodicidad, etc).

No obstante, cuando el proyectista no tenga datos más reales proporcionados por los estudios geotécnicos u otro tipo de exploraciones, puede utilizar bajo su responsabilidad el cuadro de presiones admisibles en el terreno de cimentación proporcionado por la NBE-AE-88 Acciones en la edificación. Las presiones admisibles resultan de dividir la carga de hundimiento del terreno por un coeficiente de seguridad que normalmente es 3.

TABLA 1 PRESIONES ADMSIBLES EN EL TERRENO DE CIMENTACION

miércoles, 20 de junio de 2012

REQUISITOS DE UNA BUENA CIMENTACION.



Deberá cumplir tres requisitos fundamentales:

a). El nivel de la cimentación deberá estar a una profundidad tal que se encuentre libre del peligro de heladas, cambios de volumen del suelo, capa freática, excavaciones posteriores, etc.

b). Tendrá unas dimensiones tales que no superen la estabilidad o capacidad portante del suelo.

c). No deberá producir un asiento en el terreno que no sea absorbible por la estructura.

Muchos suelos, fundamentalmente los que tienen arcillas expansivas, varían mucho de volumen según su contenido de humedad. Dichos suelos deberán evitarse o recurrir a unas cimentaciones más profundas que apoyen en terrenos más estables.

Otras veces, sin  llegar al caso anterior, las alternancias de estaciones secas y húmedas o la proximidad de árboles caducifolios con riego o la rotura de conducciones de agua generan hinchamiento del suelo que pueden producir el fallo de la estructura.

Por ello conviene alejar la cimentación de todas las causas citadas como medida de precaución.

También es importante la existencia de cimentaciones colindantes. Deberán estar, si es posible, a la misma profundidad. En el caso de tener que profundizar más deberán tomarse las  precauciones necesarias y tener el mínimo tiempo posible descubierta la excavación para producir la menor variación en el contenido de humedad del suelo.

Siempre es preferible alejar lo más posible las cimentaciones de construcciones contiguas.

martes, 19 de junio de 2012

GENERALIDADES CIMENTACIONES. ZAPATAS AISLADAS.



La cimentación constituye el elemento intermedio que permite transmitir las cargas que soporta una estructura al suelo subyacente, de modo que no rebase la capacidad  portante del suelo, y que las deformaciones producidas en éste sean admisibles para la estructura.

Por tanto, para realizar una correcta cimentación habrá que tener en cuenta las características geotécnicas del suelo y además dimensionar el propio cimiento como elemento de hormigón, de modo que sea suficientemente resistente.

lunes, 18 de junio de 2012

Revenimientos más usuales del Concreto.



Se utiliza para medir la consistencia del concreto.

El concreto debe ser fabricado para tener siempre una trabajabilidad, consistencia y plasticidad adecuadas a las condiciones de trabajo.

Se entiende por trabajabilidad la medida de lo fácil que  resulta colocar, compactar y darle acabado al concreto.

La consistencia es la capacidad del concreto fresco para fluir.

Figura 4-29. El molde para hacer la prueba del revenimiento tiene las siguientes medidas.

Figura 4-30. Paso 1. Se coloca el molde en una superficie horizontal. Paso 2. Se vacía en él la mezcla cuya plasticidad se desea clasificar. en tres capas de igual espesor.

 Figura 4-31. Se pica 25 veces con una varilla para mezclar la segunda capa con la
primera y la tercera capa con la segunda.

Figura 4-32. Paso 3. Se enrasa el concreto a nivel de la base superior del molde.
Figura 4-33. Paso 4. Se saca el molde cuidadosamente hacia arriba.

Figura 4-34. Paso 5. La diferencia en centímetros entre la altura del molde y la altura final de la mezcla, es lo que se denomina revenimiento.

La plasticidad determina la facilidad demoldear el concreto

El concreto recién mezclado debe ser plástico o semifluido y capaz de ser moldeado a mano. El concreto de consistencia plástica no se desmorona, sino que fluye como líquido viscoso sin segregarse.

La consistencia se mide en números, que determinan los asentamientos de las mezclas en condiciones o ensayos similares; este ensayo es el revenimiento.

Tabla 4.4. Revenimientos más usuales
Nota: La prueba de revenimiento deberá iniciarse dentro de los siguientes cinco minutos a la obtención de la muestra y se deberá completar en dos minutos, debido a que el concreto pierde revenimiento con el tiempo.

La prueba se realiza con un molde metálico, de 30 cm de altura, 10 cm en su base superior y 20 cm en su base de apoyo (llamado cono Abrams).

Se requieren distintos revenimientos para los diversos tipos de construcción con concreto.

Debemos considerar que para dar un revenimiento mayor se tiene que agregar agua a la mezcla y por lo tanto, también tendremos que agregar cemento para mantener la relación recomendable. En la tabla 4.4 se presentan los revenimientos más usuales según la clase de obra a que se destine el concreto.

Figura 4-35. Las revolvedoras o mezcladoras tienen capacidades de medio,uno, dos ó tres sacos.

Figura 4-36. Los motores pueden ser a base de gasolina, diesel o eléctricos.

La fabricación del concreto hecho en obra sólo se recomienda para obras pequeñas, para completar los colados o cuando no existe la posibilidad de concreto premezclado.

El uso de la mezcladora o trompo es útil cuando los volúmenes de concreto, y por lo tanto el control de calidad son mayores.

El concreto llamado premezclado es aquel que se elabora en plantas, cuyo control de calidad es estricto y se surte por medio de camiones que transportan el concreto, comúnmente llamados ollas. Los volúmenes mínimos son de5m3.

Para asegurarse de que los componentes estén combinados en una mezcla homogénea se requiere esfuerzo y cuidado. La secuencia de carga de los ingredientes en la mezcladora representa un papel importante en la uniformidad del producto terminado. Es preferible que el cemento se cargue junto con otros materiales, pero debe entrar después de que aproximadamente 10% del agregado haya entrado en la mezcladora.

El agua debe entrar primero en la mezcladora y continuar fluyendo mientras los demás ingredientes se van cargando, y debe terminar de introducirse dentro del 25% inicial del tiempo de mezclado. Así, la calidad del agua necesaria para cada mezcla se debe medir conforme a la especificación, antes del proceso.

El tiempo de mezclado para una mezcladora con una capacidad de un saco es aproximadamente un minuto y 15 segundos, y nunca será menor de 50 segundos ni mayor de 90 segundos; sin embargo, este tiempo variará según las condiciones de la mezcladora. El tiempo de mezclado debe medirse a partir del momento en que todos los ingredientes estén dentro de la mezcladora.

Entrada destacada

Hidratación del Cemento y Curado del Concreto

Hidratación del cemento y curado del concreto El curado del concreto no es simplemente una cuestión de endurecimiento del concreto a medida ...

Entradas populares