martes, 31 de enero de 2012

ARMADURAS - HORMIGÓN: Aptitud al soldeo del acero.



Las normas modernas, incluida la española, otorgan gran importancia a la aptitud al soldeo de las barras de acero para hormigón, aptitud que depende, fundamentalmente, de la composición química del acero. La Norma UNE 36.068:94 para barras corrugadas de acero soldable limita los contenidos máximos de carbono, carbono equivalente, fósforo, azufre y nitrógeno, tanto en la colada como en el producto final, según los valores de la tabla 8.2.

Más adelante se estudian los distintos tipos de empalme de barras por soldadura, así como los métodos que deben emplearse. No obstante, en cada caso será la empresa suministradora del acero la que deba especificar el método de soldeo adecuado a su producto. 


lunes, 30 de enero de 2012

ARMADURAS - HORMIGÓN: Ductilidad del acero.



Las características plásticas de las barras de acero tienen una gran importancia en el comportamiento de las piezas de hormigón armado, pues gracias a ellas se obtienen importantes ventajas:

de un lado, pueden evitarse las roturas frágiles (sin aviso) de las piezas; de otro, es posible la redistribucic3n de esfuerzos en estructuras hiperestáticas, lo que permite neutralizar eventuales errores de proyecto o de obra, así como hacer frente a ciertas solicitaciones no tenidas en cuenta en los cálculos. Además, al aumentar la ductilidad de las piezas resulta aumentada su capacidad de disipar energía bajo solicitaciones dinámicas (acción sísmica).
Un acero será tanto más dúctil cuanto mayores sean la relación fs /fy  y el alargamiento bajo carga máxima, Eu El Eurocódigo 2 distingue entre aceros de alta ductilidad y de ductilidad normal, según los valores característicos siguientes: 


y preconiza el empleo de aceros de clase S para estructuras que precisen gran ductilidad, como el caso de las ubicadas en zonas sísmicas de alto riesgo.

En fin, la Instrucción española recomienda utilizar, para estructuras sometidas a acciones
sísmicas, un acero soldable de características especiales de ductilidad, siguiendo la Norma UNE 36065 EX. Este acero, denominado B 400 SD, tiene una relación (fs,fy)k igual o superior a 1,20 (pero no mayor que 1,35) y un alargamiento bajo carga máxima e no menor del 9,0 %.
Aún cuando, como se ha dicho, cada una de las variables (fs,fy)k y Euk influye de forma positiva en la ductilidad (a mayor valor de cada una de ellas, mayor ductilidad), en el estado actual de conocimientos los investigadores no se han puesto de acuerdo acerca de la influencia relativa de cada una de ellas. Dicho de otro modo, si dos aceros A y B presentan valores cruzados entre sí (cada acero presenta un valor mayor que el otro de una de las variables y menor de la otra) no es posible saber cuál de los dos es más dúctil. A la resolución de este problema se dedican hoy esfuerzos, siendo destacables los trabajos de Honorino Ortega, quien propone medir la ductilidad del acero mediante un parámetro único, denominado factor de ductilidad, igual al área delimitada por el diagrama Ρ - E, la horizontal que pasa por el límite elástico fy y la vertical que pasa por el alargamiento bajo carga máxima Eu.

domingo, 29 de enero de 2012

ARMADURAS - HORMIGÓN: Características de adherencia.



El problema de asignar a una barra de acero un número que exprese sus características de adherencia con el hormigón ha originado gran cantidad de estudios teórico-experimentales, sin que hasta la fecha pueda decirse que se haya resuelto definitivamente. Existen diversos métodos de ensayo en uso y esta multiplicidad de soluciones es la mejor prueba de que ninguno es completamente satisfactorio.

En general, siempre que entra en juego la resistencia del hormigón a la tracción o al cizallamiento resulta difícil cuantificar los fenómenos y reflejados en fórmulas precisas. Dos buenos ejemplos son los de adherencia y fisuración, cuyo tratamiento en el calculo cs bastante aleatorio y, con frecuencia, escasamente aproximado.
Modernamente ha cristalizado un acuerdo internacional respecto a un método desarrollado por Baus (Lieja) de ensayo de adherencia por flexión. El método de Baus, modificación del beam-test (ensayo de la viga) norteamericano, ha sido adoptado por la RILEM, el CEB y la HP.

La probeta consiste en dos medias viguetas de hormigón armadas con un redondo pasante —que es la barra objeto de ensayo— y unidas por una rótula metálica en la zona de compresión (fig, 8.2). La barra va provista de manguitos de plástico que dejan, en cada semiviga, una longitud adherente de 10Ø.

Con esta disposición se obtienen tres ventajas importantes: se anula el efecto local de apoyos; se conoce con precisión la tensión en la armadura, al conocer exactamente el brazo del par interno; y se obtienen dos resultados por ensayo.



sábado, 28 de enero de 2012

ARMADURAS - HORMIGÓN: Características Mecánicas.


Las características mecánicas más importantes para la definición de un acero son: la resistencia, el límite elástico, la relación entre los dos valores mencionados, el alargamiento y la aptitud al doblado-desdoblado. Las dos primeras califican al acero desde el punto de vista resistente y las tres últimas desde el punto de vista de sus cualidades plásticas. Ambos grupos de propiedades son necesarios y, en general, se contraponen entre sí, por lo que el resultado final obtenido durante el proceso de fabricación es siempre una solución de compromiso.

Las cuatro primeras características mencionadas se determinan mediante el ensayo de tracción, que consiste en someter una barra bruta, sin mecanizar, a un esfuerzo axil de tracción hasta su rotura (Euronorm 2-57, Recomendación ISO-R82 y Norma UNE 7.474:92), obteniéndose así el diagrama tensión-deformación del acero. La aptitud al doblado-desdoblado se determina a través del ensayo correspondiente (Norma UNE 36.068:94). A continuación comentamos estas características (figura 8.1 a y b). 


Figura 8.1 Diagrama ρ-E de acero (a) con escalón de cedencia (b) sin escaón de cedencia


a) Resistencia o. carga unitaria de rotura, f x
Es la máxima fuerza de tracción que soporta la barra, cuando se inicia la rotura, dividida por el área de la sección nominal de la probeta. Se denomina también, más precisamente, carga unitaria maxima a tracción.
b) Límite elástico, fy
Es la máxima tensión (también referida a la sección nominal de la barra) que puede soportar el natenal sin que se produzcan deformaciones plásticas (remanentes) significativas. Según el tipo de acero, puede tratarse de límite elástico aparente o de límite elástico convencional. A diferencia del segundo, el primero es claramente observable en el ensayo de tracción, al presentar escalón de cedencia o de relajamiento (fig. 8. la). El segundo se define convencionalmente como la tensión que produce una deformación remanente del 0,2 por 100 (fig. 8.lb).
c) Relación fx /fy
Cuanto más alta sea esta relación más dúctil es el acero.
d) Alargamiento

En la figura 8.1 aparece representado el alargamiento bajo carga máxima o alargamiento último, Eu, que corresponde al momento de la rotura. Para determinarlo no se requiere efectuar ninguna medición especial sobre la probeta, ya que su valor se mide en el diagrama ρ-E resultante del ensayo de tracción. 


La Instrucción española no alude a este alargamiento, sino al llamado alargamiento de rotura (que, en rigor, debería llamarse alargamiento después de la rotura). Este alargamiento es el incremento de longitud de la probeta correspondiente a la carga máxima, medido después de la rotura y expresado en tanto por ciento: 

en donde I0 e I1 son, respectivamente, las longitudes inicial y final de la base de medida marcada sobre la probeta. La base de medida tiene una longitud de n veces el diámetro nominal, variando n según las normas (en general, n vale cinco o diez).

Hay que distinguir dos clases de alargamiento de rotura:

• Cuando la base de medida está centrada en la probeta, incluyendo la zona de estricción, se determina el alargamiento concentrado remanente de rotura o simplemente alargamiento de rotura. Este es el valor que limita la Instrucción española (con base de medida igual a cinco diámetros) y, para medirlo, hay que juntar a tope, después de la rotura, las dos semiprobetas resultantes. Su valor es poco significativo para el proyectista.
• Cuando, por el contrario, la zona de rotura no está incluida en la base, se determina el alargamiento repartido de rotura, cuyo valor es más pequeño que el anterior. Se trata, al igual que el anterior, de un alargamiento remanente, es decir, se mide después de retirada la carga (sobre una semiprobeta, ya rota la probeta) y no bajo ésta como sucede con el alargamiento bajo carga máxima, e. Su valor es algo más significativo que el del alargamiento concentrado, a efectos de comportamiento estructural del acero.
Ambos alargamientos de rotura varían con la longitud inicial de la base de medida. Como hemos dicho, la Instrucción española prescribe valores mínimos para el alargamiento concentrado de rotura, medido sobre base de cinco diámetros (tabla 8.5) y no se refiere al alargamiento repartido de rotura ni al alargamiento bajo carga máxima, Eu,. Sin embargo, tanto el Código Modelo CEBF1P como el Eurocódigo, sí consideran este último parámetro, más significativo que los anteriores por ser un indicador de la deformación del acero justo antes de la rotura, que puede utilizarse en cálculos no lineales o en situaciones extremas (caso de sismos).

e) Ensayo de doblado-desdoblado
Tiene por objeto comprobar la plasticidad del acero, necesaria para prevenir roturas frágiles durante las manipulaciones de ferralla y transporte. El fenómeno de rotura frágil, es decir, sin absorción importante de energía, se presenta cuando el acero se ve sometido a tensiones multidireccionas aplicadas rápidamente. El riesgo es tanto mayor cuanto más baja es la temperatura ambiente. Por esta causa se presentan alguna vez roturas en ganchos y pantillas cuando las barras experimentan fuertes impactos, como puede ser el caso durante la descarga de redondos ya preparados de ferralla si la maniobra se realiza con poco cuidado en días muy fríos.

El ensayo de doblado-desdoblado se efectúa a la temperatura ambiente, sobre un mandril cuyo diámetro depende de la clase de acero y del diámetro de la barra (ver tabla 8.6). La fuerza de doblado se aplica constante y uniformemente hasta alcanzar un ángulo de 900. A continuación se somete la probeta a un calentamiento de 1000 C durante 30 minutos y se enfría al aire, desdoblándose como mínimo 200. El ensayo se considera satisfactorio si durante el mismo no se producen grietas o pelos en la zona curva de la probeta, apreciables a simple vista (Norma UNE 36.068:94).





viernes, 27 de enero de 2012

ARMADURAS - HORMIGÓN: Características Geométricas.


Las barras empleadas en hormigón armado deben ajustarse a la siguiente serie de diámetros nominales, expresados en milímetros:

            6, 8, 10, 12, 14, 16, 20, 25, 32, 40

Esta serie tiene la ventaja de que las barras correspondientes se diferencian fácilmente unas de otras a simple vista, lo que evita confusiones en obra. Además, si se exceptúa el diámetro 14 mm, la sección de cada una de estas barras equivale aproximadamente a la suma de las secciones de los dos redondos inmediatamente precedentes, lo cual facilita las distintas combinaciones de uso.

Las barras deben suministrarse sin grietas ni sopladuras. La merma de sección no será superior al 4,5 por 100 del valor nominal correspondiente. La determinación de la sección real de una barra no es inmediata en los aceros corrugados, ya que su diámetro varía de unas zonas a otras a causa de los resaltos o corrugas. Se utiliza entonces el concepto de sección media equivalente, definido a través de la masa de la barra:


Los valores de Ja sección media equivalente y los de su correspondiente diámetro, de coincidir con los nominales, que son aquellos especificados respecto a los cuales se establecen las tolerancias de suministro.

jueves, 26 de enero de 2012

Armaduras para Hormigón armado: Generalidades



De acuerdo con la Instrucción española, las armaduras empleadas en hormigón armado pueden ser barras corrugadas de acero soldable, mallas electrosoldadas o armaduras básicas electrosoldadas en celosía. Con esta formulación, que no admite el empleo de barras lisas como armaduras para hormigón armado, la normativa española se aproxima aún más a la europea (Normas EN 10080 e ISO 6935-2).

Aparte del tipo de acero, interesa tener en cuenta las características geométricas, mecánicas, de ductilidad y de adherencia de las armaduras, así como su aptitud al soldeo. A continuación se estudia cada uno de estos aspectos.


miércoles, 25 de enero de 2012

Empleo del Hórmigon de alta resistencia HAR - Realizaciones.



Generalmente se admite que los primeros elementos resistentes ejecutados con HAR fueron los pilares (que se combinaron con forjados de hormigón estructural ligero para disminuir el peso propio de la estructura) de la torre Lake Point, de 70 pisos, construida en Chicago en 1965 con un hormigón de 52 N/mm2 de resistencia característica. Desde entonces, en esa misma ciudad se han ido construyendo gran número de edificios altos con HAR, técnica que se fue extendiendo rápidamente a otras ciudades americanas a partir de la década de los 70. A finales de dicha década, el ACI (American Concrete Institute) creó su Comité 363 dedicado al estudio del hormigón de alta resistencia.

En la década de los 80 el empleo del hormigón de alta resistencia en edificios de gran altura estaba ya muy generalizado en Estados Unidos y Canadá. En la tabla 7.2 puede verse una muestra de cómo fueron progresando las resistencias utilizadas para el hormigón a lo largo de dicho periodo.

El empleo de HAR en puentes se inició en Japón y pronto se extendió por América y Europa. En los países nórdicos, en particular Noruega y Dinamarca, la utilización del hormigón de alta resistencia en puentes se debe no tanto a la disminución del peso propio cuanto a razones de durabilidad. En Noruega es digno de mención el puente de Helgelands, con sus 425 metros de luz principal, que fue construido en 1990 con hormigón de fck = 65 N/mm2.

Enel Mar del Norte, a partir de 1972, se han construido decenas de plataformas petrolíferas con hormigones de resistencia del orden de 60 a 70 N/rnrn2.

Existen otras muchas aplicaciones del hormigón de alta resistencia: pavimentos (en Noruega se han alcanzado hasta 130 N/mm2 de resistencia en 1989), traviesas de ferrocarril dovelas para túneles, tuberías, etc. Por otra parte, desde 1987 se vienen celebrando congresos internacionales sobre la materia, siendo de esperar que pronto se vean colmadas las lagunas que todavía existen en el conocimiento del HAR, cuyo tratamiento en la normativa internacional es aún escaso. 


Entrada destacada

Hidratación del Cemento y Curado del Concreto

Hidratación del cemento y curado del concreto El curado del concreto no es simplemente una cuestión de endurecimiento del concreto a medida ...

Entradas populares