sábado, 29 de enero de 2011

Estructura del Acero.

Conforme el acero obtenido del proceso de refinamiento se va enfriando, sus átomos se arreglan dé tal manera que de acuerdo a la temperatura toman una posición que obedece a la ley de la menor energía de cristalización. Esto ocurre de tal forma que si se considerara al metal fundido en un recipiente, pasaría lentamente del estado líquido al sólido, en esta secuencia el material se enfría primero en las esquinas, luego en los bordes y posteriormente en el interior, los átomos se entrelazan unos con otros formando una estructura dendrítica como la que se muestra esquemáticamente en la Figura 11.2.
Figura 11.2. Esquema Microscópico de solidificación del acero.

La estructura policristalina que se observa en la figura anterior revela que los granos del material sólido varían entre sí, y en cada grano los átomos se arreglan de forma regular en una estructura conocida como estructura atómica. Para el acero existen dos estructuras principales, la estructura cúbica centrada en la cara (face centred cubic structure, fcc) y la estructura cúbica centrada en el cuerpo (body centred cubic structure, bcc).

La Figura 11.3 muestra las dos estructuras, donde los átomos se simbolizan por puntos o bolas. En el caso del acero, la estructura atómica fcc se produce arriba de los 910 °C, y la bcc se produce abajo de los 910 °C, estos cambios son fundamentales en la tecnología metalúrgica del acero. Estas estructuras no son las más densas que puede tener un metal, existe la estructura hexagonal compacta (close packed hexagonal structure, hcp), que caracteriza al magnesio, zinc, cobalto y titanio, sin embargo la estructura  del  acero  es  lo suficientemente  fuerte  para  resolver  un  sinfín  de  problemas estructurales.

Figura 11.3. Fases de Estructura Atómica del Acero.

Arriba, Estructura Cúbica Centrada en la Cara (fcc). Abajo, Estructura Cúbica Centrada en el Rara vez se emplea a los metales en su estado puro, generalmente se les alea con otros. La aleación se basa en la disolución del metal base con la aleación, durante la aleación, algunos átomos del metal base pueden ser sustituidos por los de la aleación,   o algunos átomos de la aleación pueden ocupar espacios intersticiales entre los átomos del metal base, La Figura 11.4 muestra como encajan los átomos de materiales como el carbono o el nitrógeno con átomos Cuerpo (bcc). mayores.


Figura 11.4. Aleación Intersticial de átomos de Carbono o Nitrógeno.

Producción del Acero.

La producción del acero consiste en una depuración de la cantidad de carbono contenida en el hierro de bajo grado, esto se logra con una nueva fundición, logrando por medio de procesos de oxidación controlada, bajar el contenido de carbono a cerca del 0.2 %. Las consideraciones teóricas para llevar esto a cabo son complejas e involucran a la térmica y a la química, pero si supusiéramos que el hierro de bajo grado se representa por Fe3C (carburo de fierro), la pérdida de carbono se puede representar por:

Fe3 C + O Fe + CO 
En la expresión anterior el monóxido de carbono se pierde en la atmósfera, el proceso de refinamiento se aplica tantas veces como sea necesario, en la actualidad el proceso aún no se mejora, pero en el futuro seguramente se hará, y de una misma hornada se podrá obtener tanto acero como hierro.

El  acero  obtenido  de  las  etapas  de  refinamiento  guarda  aún  algunas  impurezas,  sin embargo ya se le puede emplear en la construcción gracias a su resistencia a la corrosión, su ductilidad y su facilidad para darle forma.

Obtención del Hierro de Bajo Grado o Hierro Sucio.

La producción de los metales ferrosos inicia con la obtención del hierro de bajo grado o hierro sucio, esto se logra en un alto horno, la Figura 11.1 muestra un ejemplo del horno. Esta estructura tiene en su interior una cubierta de tabique refractario, indispensable para soportar las altas temperaturas que se requieren en la fundición de los ingredientes básicos. El horno es una estructura muy grande, con un diámetro mayor de unos 15 m y una altura aproximada a los 30 m. Los ingredientes básicos se alimentan al horno por la parte superior, formando series de capas, en cada serie se coloca el coque (carbón quemado, con este tratamiento el carbón pierde impurezas y arde a más altas temperaturas), a continuación se coloca una capa de caliza triturada o dolomita, y al último se coloca una capa del mineral de fierro de que se trate. El mineral de hierro puede ser: hematita (Fe2O3), magnetita (Fe3O4), limonita (Fe2O3  + nH2O), o algún otro disponible en la región.  Se  quema  el  coque  y  se  mantiene  el  calor  inyectando  aire  caliente  al  sistema,  la temperatura  que  alcanza  los  850  °C  funde  el  mineral  de  fierro,  el  hierro  fundido  en  su movimiento hacia abajo se mezcla con la caliza fundida y en ella quedan atrapadas impurezas formando lo que se conoce como la escoria, en el proceso se desprende monóxido de carbono, éste gas en su ascenso le imparte al hierro el contenido de carbono que poseerá al final de la etapa de fundición. En la parte inferior del horno, donde las temperaturas alcanzan los 1200 °C, se recoge en el nivel más bajo el hierro en forma líquida y a un nivel ligeramente más alto se recoge la escoria, según se aprecia en la Figura 11.1.

El hierro obtenido del proceso de fundición descrito anteriormente no es puro, de ahí el nombre de hierro de bajo grado, éste metal contiene cantidades altas de carbono por lo que industrialmente es de poca utilidad, también contiene otros minerales como silicón, manganeso y azufre.  En  estas  condiciones  el  hierro  se  somete  a  una  nueva  fundición  mezclándolo  con desperdicios de hierro y de acero, y por medio de un proceso de oxidación controlado a base de un chorro de aire se le reduce el porcentaje de carbono hasta lograr de un 2 a un 4 %, el resultado se vacía en moldes de arena o metal, por esta razón se le llama hierro colado.
 Figura 11.1. Obtención del Hierro en un Alto Horno.

El hierro colado se emplea muy poco en la construcción, una de sus aplicaciones es el colado de tubería para bajadas de drenaje sanitario. El problema con este tipo de tubería es que por ser pesada, es difícil de manejar y ensamblar, además el material es frágil a los impactos y fácilmente se puede fracturar con un golpe. Por estas razones el hierro colado prácticamente ha sido desplazado por los plásticos, en este caso la mejor alternativa es el cloruro de polivinilo (PVC).

Una variedad del hierro es el hierro forjado este hierro contiene un porcentaje muy bajo de carbón, no mayor del 0.09 %, por esta razón el material es muy maleable y solo se le emplea en la construcción con propósitos de hornato, no tiene ninguna aplicación estructural.

Los Metales Ferrosos en la Construcción.

Al hierro y al acero se les considera como metales ferrosos por ser materiales derivados del procesamiento industrial de los minerales de fierro. Estos materiales, de los cuales el acero cobra especial importancia por ser el de mayor uso en la construcción, se consideran como muy homogéneos debido a su riguroso control de producción, esto permite determinar sus propiedades mecánicas con mucha confianza, otros materiales como la madera y el concreto generalmente presentan una mayor dispersión en sus propiedades.
El hierro prácticamente no se emplea para edificar estructuras, ya que su composición química (alto contenido de carbono e impurezas) lo hace muy resistente a la compresión pero poco  dúctil,  por  el  contrario,  el  acero  al  combinar  resistencia  y  ductilidad  permite  crear estructuras que se deformen antes de fallar, lo cual permite salvar la vida de los usuarios. Cada vez se hace un uso más extensivo del acero, especialmente en zonas sísmicas donde se requieren grandes factores de seguridad en las estructuras, esto se logra gracias a la gran rigidez que se puede lograr con este material. Otra de las grandes ventajas del acero es que se pueden fabricar de antemano todo tipo de formas geométricas que después se ensamblan en el lugar de la obra a base de soldadura o de remaches. Desafortunadamente el material requiere de cuidados en su manejo especialmente a la hora del ensamble y  también requiere de protección adecuada contra su enemigo número uno, la corrosión.

viernes, 28 de enero de 2011

Adición al Concreto de Repelentes al Agua.

Los aditivos repelentes al agua se componen de una suspensión de algún producto plástico como el estearato y otros compuestos. El aditivo se adiciona al concreto durante el mezclado para lograr un tratamiento integral de la masa de concreto, esto se logra gracias a que el estearato es una sustancia insoluble, que al pegarse en las paredes de los poros y oquedades repele el agua. Dentro de los beneficios que proporciona el aditivo además de reducir la cantidad de agua que se puede filtrar al través del concreto o mortero donde se emplee se tienen:

1. Aumenta la resistencia al intemperismo

- humedecimiento-secado
- congelamiento-deshielo

2. Aumenta la resistencia al ataque químico

3. Reduce la eflorescencia debida a la humedad (salitre)

4. Reduce las probabilidades de corrosión en el acero de refuerzo


La cantidad de aditivo a emplear depende de la impermeabilidad deseada, se han empleado de 190 a 390 ml por cada 100 Kg de cemento.

Inhibidores de Corrosión del Acero.

Los aditivos inhibidores de corrosión son productos químicos a base de nitrito de calcio, que se adicionan al concreto en el momento de la dosificación, y que interactúa con el acero de refuerzo embebido en el concreto para contrarrestar el efecto de las sales que pueden acelerar la corrosión del acero. Este tipo de aditivo se recomienda para todo tipo de concreto postensado o preesforzado. Algunos de estos aditivos se presentan en estado líquido, diluidos en agua, por lo que se debe ajustar la cantidad de agua de mezcla considerando que el aditivo contribuirá con algo. Las dosis del aditivo dependen del fabricante, pero se han empleado de 10 a 30 litros por metro cúbico de concreto.

jueves, 27 de enero de 2011

Edificio Málaga se Derrmbó: Envían 17 rescatistas a Santa Cruz.

Un ingeniero civil especialista en estructuras, un coordinador y 15 personas entrenadas en tareas de rescate del Grupo de Atención de Emergencias Municipales (GAEM) se trasladaron ayer a Santa Cruz para coadyuvar en las tareas de rescate de las personas que se encuentran atrapadas debajo de los escombros del ex edificio Málaga, que colapsó la noche del lunes 24 de Enero.

El alcalde Luis Revilla, que se encontraba en la capital oriental para asistir a una reunión de la Asociación de Municipios de Bolivia (AMB), informó en la víspera que un grupo de cinco técnicos especializados en rescate ya están apoyando a los técnicos en la zona del desastre, y que otros 12 viajaron anoche en un avión que trasladó insumos y agua para las labores de rescate.

GAEM

El GAEM es el grupo de 40 rescatistas especializados en trabajos de alto riesgo. Fue creado en 2003 y tiene casi ocho años de vida velando por la seguridad de los habitantes del municipio de La Paz, cuyas características topográficas requieren de este tipo de servicios.

Su misión es intervenir en acciones inmediatas de búsqueda, salvamento, rescate, prevención y atención de emergencias, para minimizar el sufrimiento de las personas, reducir las pérdidas humanas y materiales. Capacitar a personas con alta vocación de servicio para prevenir, atender y apoyar durante y después de las emergencias o desastres.

ANUNCIO

“En unas horas más llegará un grupo de 12 personas de La Paz para coadyuvar en esta situación que definitivamente es muy difícil. Hemos hecho una inspección y se ha constatado que son varios pisos los que han colapsado y es necesario intensificar las tareas de rescate en el lugar porque se sabe que todavía hay personas debajo de los escombros y hay mucha preocupación de los familiares”, explicó.

El burgomaestre dijo que en el tema de construcciones, la Alcaldía de La Paz cuenta con normas y reglamentos para edificaciones que datan de hace 10 años, pero que el Concejo Municipal trabaja en su actualización. Sin embargo, agregó que fuera de las tareas de fiscalización que realizan los técnicos de las subalcaldías, es preciso que los profesionales del rubro sean responsables con su trabajo, porque de ello depende la vida de muchas personas.

Gracias a una acción conjunta con Defensa Civil y el Gobierno Autónomo Municipal de La Paz, los rescatistas del GAEM realizaron el “Curso de Especialización” en rescate vertical, vehicular y en aguas rápidas, con el Comando Sur de los Estados Unidos. Especialidades aplicadas en la atención de emergencias.

Fuente: http://www.fmbolivia.com.bo

Entrada destacada

Hidratación del Cemento y Curado del Concreto

Hidratación del cemento y curado del concreto El curado del concreto no es simplemente una cuestión de endurecimiento del concreto a medida ...

Entradas populares