Acero: Ductilidad.

Como se puede observar en la Figura 11.5, una vez que se alcanza el límite de fluencia se presenta una reducción progresiva de la sección transversal del espécimen como consecuencia del alargamiento  del  mismo  hasta  alcanzar  la  ruptura,  estos  dos  hechos  se  interpretan  como  la ductilidad que posee el material. A medida que en los aceros se detecte un aproximamiento del límite  de  fluencia  con  el  límite  de  ruptura  (en  la  figura  C  se  acercaría  a  A)  la  ductilidad disminuye. En la metalurgia se pueden lograr aceros con alta capacidad a la tensión pero poca ductilidad, basta con aumentar el contenido de carbono o con alear al acero con otros metales.

En la ingeniería civil se acostumbra diseñar estructuras tanto metálicas como de concreto reforzado para que se comporten de una manera dúctil antes de que un incremento excesivo en las cargas les provoquen la falla. Este comportamiento dúctil da como señal inequívoca de peligro, deflexiones y deformaciones visibles a simple vista, de tal manera que el usuario puede desalojar la estructura antes de que se presente el colapso total. Lo anterior no significa que un acero de alta resistencia pueda ser malo, sino que el diseñador debe considerar cuidadosamente que influencia tendrá  la  baja  ductilidad  en  el  comportamiento  de  la  estructura  una  vez  que  se  exceda  la capacidad de carga de diseño.

El fenómeno de ductilidad en los metales es bastante complejo, al parecer esto se logra cuando la intensidad de la carga provoca que algunos átomos de la estructura atómica (lattice) se deslicen con respecto a otros. El fenómeno de ductilidad se relaciona estrechamente con la dislocación de los átomos de la estructura atómica del material, en el acero, como ya se ha mencionado, se tiene una estructura bcc, ésta estructura no es la más compacta, por eso en su estado  puro  presenta  una  gran  cantidad  de  grados  de  libertad  para  alojar  fenómenos  de dislocación  muy  variados,  la  Figura  11.6  muestra  esquemáticamente  y  de  manera  muy simplificada una secuencia de dislocación por cortante.

 Figura 11.6. Fenómeno de Dislocación Cristalográfica.

Existen otros metales que presentan una estructura atómica más compacta que el acero, como el magnesio, el zinc, el cadmio, el cobalto y el titanio, que poseen una estructura hexagonal fuertemente compacta (close packed hexagonal structure, hcp). Estos metales presentan menos grados de libertad para aceptar dislocaciones,  esto se refleja en su gran estabilidad y resistencia, de hecho son metales que combinados con el acero le dan a éste una gran capacidad de carga, aunque a costa de una menor ductilidad.

0 comentarios:

Publicar un comentario