lunes, 4 de marzo de 2013

Permeabilidad e impermeabilidad en la Construcción.


Se define la permeabilidad o difusión al vapor de agua (dv) como la cantidad de vapor que pasa a través de la unidad de superficie de material de espesor unidad cuando la diferencia de presión de vapor entre sus caras es la unidad.

Se mide generalmente en g cm/mmHg m2 día. En unidades SI se expresa en g m/MN s (gramo metro por meganewton segundo).

La equivalencia es:


Así mismo, se define la resistencia al vapor (rv) como el inverso de la permeabilidad al vapor dv.



Se puede considerar impermeabilidad cuando un revestimiento o cualquier otro material ofrece una resistencia a la penetración del agua de lluvia, pero no al vapor de agua (figura 1.4).

Sección de un cerramiento de fachada.
Figura 1.4 Sección de un cerramiento de fachada.

La resistencia al vapor de agua o rv es el valor de la resistencia total de un material de espesor e o combinación de varios, a la difusión del vapor de agua. Es decir:




Se expresa normalmente en mmHg m2 día’g. En unidades SI se expresa en MN s/a (meganewton segundo por gramo).

La equivalencia es:



En un cerramiento formado por varias capas su resistencia al paso del vapor será la suma de las resistencias de cada una de las capas, despreciándose las resistencias superficiales:




Los materiales con juntas no tienen una resistencia al vapor uniforme ya que sus juntas resultan generalmente más permeables que el resto. En este caso, debe emplearse la resistencia al vapor útil del conjunto, repartiendo las resistencias al vapor proporcionalmente a las superficies que ocupen las juntas y el resto. Es decir, puede:

La permeabilidad de un material al vapor de agua viene dada por su coeficiente de permeabilidad, cuyos valores típicos se señalan en las tablas siguientes.

Los datos que aparecen en las tablas 1.2 y 1.3 de algunos materiales utilizables en construcción son valores típicos aproximados y orientativos.



Resistencias al vapor de agua.

Resistencia al vapor de agua.

jueves, 28 de febrero de 2013

CONSTRUCCION INTEGRACIÓN ENTRE LAS DISTINTAS PARTES A IMPERMEABILIZAR

No obstante que se tomen las medidas correspondientes para cada fuente de humedad, para que la “impermeabilidad” de una estructura o elemento constructivo sea efectiva, se debe considerar a ésta bajo la concepción de un “todo”. (1)

(1) : Cabe destacar que las medidas enunciadas no podrán tener la efectividad prevista si no existe un adecuado manejo en
obra y una coordinación de las distintas partidas involucradas.


FACTORES A CONSIDERAR.


A Integración entre los distintos elementos a proteger
Debe existir una integración entre los distintos elementos a proteger, de tal forma que cada uno de éstos tenga una adecuada transición con el otro; como: empalmes muro – piso, retornos en general, juntas de dilatación y otros. Permitir los movimientos estructurales y térmicos de la estructura es de vital importancia y/o que cada elemento se complemente con otro, por ejemplo, uso de drenajes,  de pendientes de escurrimiento adecuadas,  de aleros en obras de edificación u otros.

 
B Impermeabilidad de cada elemento considerado "auxiliar" o "detalle" 
Se debe contemplar la impermeabilidad de cada elemento considerado “auxiliar” o “detalle”, por ejemplo:
Sellos de pasadas de ductos en general, sello de todo tipo de juntas, sellos de las conexiones de los equipos de aire acondicionado, eléctricos y otros con la estructura 

lunes, 25 de febrero de 2013

Impermeabilización Cuidados, pruebas y protecciones posteriores a la colocación - Estructuras.

1. Una vez realizada la impermeabilización se procede a su prueba. De acuerdo a las buenas prácticas se recomienda:



2. Comprobada la efectividad de la impermeabilización se debe cuidar su permanencia en el tiempo de forma que:

• No se deteriore:
• No transitar sobre la impermeabilización sin protegerla
• No sobreponer materiales o elementos punzantes (clavos, grava, gravilla u otros)
•  Quede protegida de agentes externos que puedan hacerlas perder sus características iniciales o degraden el material (ver recomendaciones del fabricante)

Medidas a considerar para la correcta ejecución de los trabajos de impermeabilización - Estructuras

CONSIDERACIONES GENERALES
· Programar la actividad de impermeabilización entre las etapas de obra gruesa y terminaciones
· Los productos son colocados de acuerdo a planos y especificaciones técnicas
· Los productos son colocados de acuerdo a las recomendaciones del fabricante
· Exista coordinación entre los distintos subcontratistas involucrados, de tal forma que se lleve a efecto la impermeabilización total de la estructura
· Exista control durante la ejecución de las obras.

MEDIDAS GENERALES
· Acordonamiento en torno al sector impermeabilizado para evitar tránsito de personas ajenas a la faena
· Instalación de letreros indicando prohibición de transitar
· Colocación de las capas de protección, si corresponde, apenas las condiciones lo permitan (inmediatamente después de las pruebas de estanqueidad)
· Tránsito de un mínimo de operarios sobre los sistemas de impermeabilización,  instruyéndolos además de los cuidados a tener para no dañar las obras, por ejemplo, no dejar caer objetos pesados o con puntas
· Uso de los operarios de calzado con plantas lisas.

MEDIDAS PARTICULARES
· Calidad de la base, de acuerdo a especificaciones
· Calidad de los materiales. Usar sólo productos de fabricantes reconocidos
· Instalación de acuerdo a recomendaciones y especificaciones (N0 de capas, secuencia de
aplicación entre las distintas capas, condiciones ambientales y otros)

· Cuidar que se sellen todos los elementos que se van a impermeabilizar, como retornos, gárgolas  y otros.  

Selección del sistema de impermeabilización (tipo y productos) - Estructuras.

1. Se puede optar por una impermeabilización en la masa o superficial, no obstante que la adopción de ambos sistemas en forma complementaria, permite asegurar la estanqueidad de las estructuras, reduciendo los espesores de aplicación de impermeabilización superficial, redundando en una alternativa eficiente y económica.

2. La selección del tipo de producto de impermeabilización superficial depende de las condiciones particulares de la obra. Para esto es necesario hacer un análisis de:

 - Identificación del elemento a impermeabilizar y su función
 - Solicitaciones a que es sometido
 - Otros, tales como factor estético y facilidad de aplicación.

3. Independientemente de lo anterior, la primera medida a adoptar es la ejecución de un hormigón de máxima compacidad, lo que redunda en una disminución notable de la permeabilidad, aumentando de esta forma la durabilidad de los elementos. Para esto se recomienda:

 - Baja razón agua/cemento (A/C)
 - Contenido adecuado de granos finos
 - Adecuado manejo en obra.

Hormigón de máxima compacidad:

PROYECTO DE IMPERMEABILIZACIÓN - ESTRUCTURAS.

Para que el sistema de impermeabilización sea efectivo, se debe contar con un proyecto de impermeabilización.

A. Selección del sistema de impermeabilización (tipo y productos)   1. Se puede optar por una impermeabilización en la masa o superficial, no obstante que la adopción de ambos sistemas en forma complementaria, permite asegurar la estanqueidad de las estructuras, reduciendo los espesores de aplicación de impermeabilización superficial...

B. Medidas a considerar para la correcta ejecución de los trabajos    CONSIDERACIONES GENERALES · Programar la actividad de impermeabilización entre las etapas de obra gruesa y terminaciones · Los productos son colocados de acuerdo a planos y especificaciones técnicas...

C. Cuidados, pruebas y protecciones posteriores a la colocación   1. Una vez realizada la impermeabilización se procede a su prueba. De acuerdo a las buenas prácticas se recomienda...

jueves, 21 de febrero de 2013

IMPERMEABILIZACIONES EDIFICACIONES.

La filtración de agua o humedad hacia una estructura, proveniente de distintas fuentes, tales como, humedad proveniente del suelo, de las aguas lluvias, de los materiales de construcción, humedad producida por la condensación de la humedad ambiente y humedad accidental, como también la salida de agua de una estructura, como es el caso de estanques y depósitos en general, genera daños que afectan la funcionalidad, forma y estructura de los elementos, los que ineludiblemente se transforman en asumir mayores costos.

1. Proyecto de impermeabilización   Para que el sistema de impermeabilización sea efectivo, se debe contar con un proyecto de impermeabilización...

2. Integración entre las distintas partes a impermeabilizar   No obstante que se tomen las medidas correspondientes para cada fuente de humedad, para que la “impermeabilidad” de una estructura o elemento constructivo sea efectiva, se debe considerar a ésta bajo la concepción de un “todo”...

lunes, 18 de febrero de 2013

COLUMNAS DE ROCA - CIMENTACIONES SUPERFICIALES.

Un método actualmente usado para incrementar la capacidad de carga de cimentaciones superficiales sobre estratos de arcilla blanda es la construcción de columnas de roca, que consiste generalmente en introducir un vibroflot (sección 12.7) mediante un chorro de agua en el estrato de arcilla blanda para hacer un agujero circular que se extienda a través de la arcilla hasta suelo más firme. El agujero se reliena entonces con una grava seleccionada. La grava en el agujero es gradualmente compactada al retirar el vibrador. La grava usada para la columna de roca tiene tamaños que varían de entre 0.25 y 1.5 pulg (6-40 mm). Las columnas de roca tienen usualmente diámetros de 1.6 - 2.5 pies (0.5-0.75 m) y son espaciadas a distancias de 5-10 pies (1.5-3 m) entre centros. Después de la construcción de las columnas de piedra, siempre debe colocarse un  material de relleno sobre la superficie del terreno y compactarse antes de la construcción de la cimentación. Las columnas de piedra tienden a reducir el asentamiento de las cimentaciones bajo cargas permisibles. Varios casos-historia de proyectos de construcción usando columnas de roca fueron presentados por Hughes y Withers (1974), Hughes y otros (1975), Mitchell y Huber (1985), y otros más.



Asentamiento de cimentación construida sobre columnas de roca.
FIGURA 12.40 Asentamiento de cimentación construida sobre columnas de roca.
En la actualidad no se tiene una manera estándar de estimar el asentamiento de cimentaciones construidas sobre columnas de roca. Sin embargo, con base en la recomendación de Greenwood y Thompson (1984) y en observaciones del autor, se cia en la figura 12.40 una carta tentativa para estimar el asentamiento. Para utilizar la figura 12.40, use el procedimiento siguiente:

1. Determine el área de la sección transversal AS de la columna de roca.
2. Determine el área promedio de la cimentación AF de la columna.
3. Calcule la relación AF/AS.
4. Estime la resistencia cortante no drenada, cu. de la arcilla y el asentamiento probable SF de una cimentación de columna suponiendo que fue construida sin las columnas de piedra.
5. Con valores conocidos de AF/AS y cu, determine la relación SF/SS (SS = asentamiento probable de la cimentación construida sobre columnas de roca) con ayuda de la figura 12.40b.
6. Con valores conocidos de SF y SP/SS, calcule SS.

Hughes y otros (1975) proporcionaron una relación aproximada para la capacidad admisible de carga (qa) de columnas de roca, que se expresa como

Idelización de celda unitaria de una columna de roca.
FIGURA 12.41 Idelización de celda unitaria de una columna de roca.

Las columnas de roca trabajan más efectivamente cuando se usan para estabilizar una gran área donde la resistencia cortante no drenada del subsuelo varía entre 200 y 1000 lb/pie2 (10-15 kN/m2) que cuando se usan para mejorar la capacidad de carga de cimentaciones estructurales (Bachus y Barksdale, 1989). Los subsuelos más débiles que los anteriores no proporcionan suficiente soporte lateral para las columnas de roca. Para el mejoramiento de grandes sitios, las columnas de roca son más efectivas a una profundidad de entre 20 y 30 pies (6-10 m). Sin embargo, las columnas de roca han sido construidas hasta una profundidad de 100 pies (31 m). Bachus y Barksdale dieron las siguientes directrices generales para el diseño de columnas de roca para estabilizar grandes áreas:


La figura 12.41a muestra la vista en planta de varias columnas de piedra, y la figura 12.41b la descripción de una celda unitaria de una columna de roca. La razón de reem




Cuando se aplica un esfuerzo uniforme por medio de una operación de relleno a un área con columnas de roca para inducir consolidación, se presenta una concentración de esfuerzos debido al cambio de la rigidez entre las columnas de roca y el suelo que las rodea (figura 12.41c). El factor, n’, de concentración de esfuerzos se define como




La variación de μc y as y n’ se muestra en la figura 12.42. El mejoramiento del suelo debido a las columnas de roca se expresa como


Variación de μc con as y n’
FIGURA 12.42 Variación de μc con as y n’

jueves, 14 de febrero de 2013

ESTABILIZACIÓN CON CEMENTO - MEJORAMIENTO DEL TERRENO.

El cemento se usa cada vez más como estabilizador para suelos, particularmente en la construcción de carreteras y presas de tierra. La primera construcción controlada con suelo-cemento en Estados Unidos se llevó a cabo cerca de Johnsonville, Carolina del Sur, en 1935. El cemento se usa para estabilizar suelos arenosos y arcillosos. Como en el caso de la cal, el cemento ayuda a disminuir el límite líquido y a incrementar el índice plástico y la manejabilidad de los suelos arcillosos. Para suelos arcillosos, la estabilización con cemento es efectiva cuando el límite líquido es menor que 45-50 y el índice plástico es menor que aproximadamente 25. Los requisitos óptimos del cemento por volumen para la estabilización efectiva de varios tipos de suelos están dados en la tabla 12.8.

 Cemento requerido por volumen para la estabilización efectiva de varios suelos.

Como la cal, el cemento ayuda a incrementar la resistencia de los suelos y la resistencia crece con el tiempo de curado. La tabla 12.9 presenta algunos valores típicos de la resistencia a compresión no confinada de varios tipos de suelos no tratados y mezclas suelo-cemento hechas con aproximadamente 10% de cemento por peso.

Resistencias típicas a compresión de suelos y mezclas suelo-cemento.

Los suelos granulares y arcillosos con baja plasticidad son obviamente los más adecuados para la estabilización con cemento. Las arcillas cálcicas son más fácilmente estabilizadas por la adición de cemento, mientras que las arcillas sódicas e hidrogenadas, de naturaleza expansiva, responden mejor a la estabilización con cal, Por estas razones debe ponerse atención a la selección del material estabilizador.

Para compactación en campo, la cantidad apropiada de cemento se mezcla con suelo ya sea en el sitio o en una planta mezcladora y luego se lleva al sitio. El suelo es compactado al peso unitario requerido con una cantidad de agua predeterminada.

Igual que la inyección de cal, el mortero hecho de cemento Portland y agua (relación agua-cemento = 0.5:5) se usa para la cementación de suelos pobres bajo cimentaciones de edificios y otras estructuras. La cementación disminuye la permeabilidad hidráulica de los suelos e incrementa la resistencia y la capacidad de carga. En el diseño de cimentaciones de maquinaria de baja frecuencia sometidas a fuerzas vibratorias, a veces es necesario rigidizar la cimentación por cementación incrementando así la frecuencia de resonancia.

lunes, 11 de febrero de 2013

CONSTRUCCIÓN MEJORAMIENTO DEL SUELO Y MODIFICACIÓN DEL TERRENO.

INTRODUCCIÓN
El suelo en un sitio de construcción no será siempre totalmente adecuado para soportar estructuras como edificios, puentes, carreteras y presas. Por ejemplo, en depósitos de suelo granular el suelo in situ tal vez esté muy suelto e indique un gran asentamiento elástico. En tal caso, tiene que ser densificado para incrementar su peso específico así como su resistencia cortante.

Algunas veces, las capas superiores del suelo no son adecuadas y deben retirar- se y reemplazarse con mejor material sobre el cual pueda construirse una cimentación estructural. El suelo usado como relleno debe estar bien compactado para soportar la caga estructural deseada. Los rellenos compactados también se requieren en área de poca altura para elevar el terreno donde se construirá una cimentación.

Estratos de ardua blanda saturada a menudo se encuentran a poca profundidad debajo de las cimentaciones. Dependiendo de la carga estructural y de la profundidad de los estratos de arcilla, ocurren grandes asentamientos por consolidación, requiriéndose entonces procedimientos especiales de mejoramiento del suelo para minimizar los asentamientos.

Anteriormente mencionamos que las propiedades de los suelos expansivos se alteran considerablemente agregando agentes estabilizadores como la cal. El mejoramiento in situ de suelos por medio de aditivos se conoce como estabilización.

Varios procedimientos para el mejoramiento del suelo se usan para:

1. Reducir el asentamiento de las estructuras
2. Mejorar la resistencia cortante del suelo e incrementar así la capacidad de carga de las cimentaciones superficiales
3. Incrementar el factor de seguridad contra posibles fallas de los taludes de riberas y presas de tierra
4. Reducir la contracción y expansión de suelos.

jueves, 7 de febrero de 2013

DISEÑO DE CIMENTACIONES EN SUELOS SUSCEPTIBLES A LA HUMEDAD.

Si es probable que el estrato superior de suelo se humedezca y se colapse algún tiempo después de la construcción de la cimentación, deben considerarse varios procedimientos para evitar la falla de la cimentación.

1. Si la profundidad esperada de humedecimiento es aproximadamente de 5 a 6.5 pies (‘4,5 a 2 m) desde la superficie del terreno, el suelo debe ser humedecido y recompactado por medio de rodillos pesados.

Zapatas corridas y losas pueden construirse sobre el suelo compactado. Una alternativa a la recompactación por medio de rodillos pesados es el apisonado pesado a veces denominado cornpactación dinámica, consistente principalmente en dejar caer repetidamente un gran peso sobre el terreno. La altura de caída varía de 25 a 100 pies ( 8 a 30 m). Las ondas de esfuerzo generadas por la caída del martillo ayudan a densificar el suelo.

2. Si las condiciones son favorables, zanjas de cimentación se inundan con soluciones de silicato de sodio y cloruro de calcio para estabilizar el suelo químicamente. El suelo se comportará como una arenisca blanda y resistirá el colapso al saturarse. Este método tiene éxito sólo sí las soluciones penetran a la profundidad deseada; el método es entonces principalmente aplicable a depósitos de arena fina. Los silicatos son algo costosos y en general no se usan. Sin embargo, en algunas partes de Denver, los silicatos han sido usados con mucho éxito.

La inyección de una solución de silicato de sodio para la estabilización de depósitos de suelos colapsables fue usada extensamente en la antigua Unión Soviética y en Bulgaria (Houston y Houston, 1989). Este proceso se usa para suelos colapsables secos y para suelos colapsables húmedos que se compriman bajo el peso adicional de la estructura a construirse sobre ellos y consiste en tres pasos:

Paso 1. Inyección de bióxido de carbono para retirar cualquier presencia de agua y activación preliminar del suelo
Paso 2. Inyección de lechada de silicato de sodio
Paso 3. Inyección de bióxido de carbono para La neutralización de los álcali.

3. Cuando el estrato de suelo es susceptible al humedecimiento hasta una profundidad de aproximadamente 10 m, se usan varios procedimientos para ocasionar el colapso del suelo antes de la construcción de la cimentación. Dos de ellos son la vibroflotaeión y el embalse. La vibroflotaci6n se usa con éxito en suelos de drenaje libre. El procedimiento de embalse (por medio de la construcción de diques de baja altura) se utiliza en sitios que no tienen capas impermeables. Sin embargo, aún después de la saturación y del colapso del suelo por embalse, algún asentamiento adicional del suelo llega a ocurrir después de la construcción de la cimentación. Un asentamiento adicional también es causado por una saturación incompleta del suelo durante la construcción. El embalse se usa con éxito en la construcción de presas de tierra.

4. Si el precolapso del suelo no es práctico, las cimentaciones pueden extender- se más allá de la zona de posible humedecimiento, requiriendo pilotes y pilas perforadas. El diseño de estas cimentaciones debe tener en consideración el efecto de la fricción negativa que resulta del colapso de la estructura del suelo y del asentamiento asociado de la zona de humedecimiento subsecuente.

En algunos casos también debe considerarse un tipo de cimentación con columna de roca (vibroreemplazo).

Las columnas de roca se construyen con boleos grandes que penetran la capa de suelo potencialmente colapsable. Éstas actúan como pilas al transferir la carga a un estrato más estable de suelo.

martes, 5 de febrero de 2013

DISEÑO DE CIMENTACIONES EN SUELOS NO SUSCEPTIBLES A HUMEDECERSE.

Para fines de diseño real de cimentaciones, se llevan a cabo algunas pruebas de carga estándar en campo. La figura 11.4 muestra los resultados de algunas pruebas de carga en campo en depósitos de loes en Nebraska y en Iowa. Note que las relaciones carga-asentamiento son esencialmente lineales hasta cierta presión crítica, p, en la cual se tiene una ruptura de la estructura del suelo y por consiguiente un asentamiento considerable. Las rupturas repentinas de la estructura de suelos son más comunes en suelos con contenido de agua natural alto que en suelos normalmente secos.
Resultados de prueba de carga estándar en depósitos tipo Loes en Iowa y Nebraska.
FIGURA 11.4 Resultados de prueba de carga estándar en depósitos tipo Loes en Iowa y Nebraska.

Si se toman suficientes precauciones en el campo para impedir que la humedad se incremente bajo las estructuras, se construyen cimentaciones corridas y losas de cimentación sobre suelos potencialmente colapsables. Sin embargo, las cimentaciones deben proporcionarse de manera que los esfuerzos críticos (figura 11.4) en el campo nunca se excedan. Un factor de seguridad de aproximadamente 2.5 a 3 debería usarse para calcular la presión admisible del suelo, o



Los asentamientos diferenciales y totales de esas cimentaciones deben ser similares a los de las cimentaciones diseñadas para suelos arenosos.

Las cimentaciones continuas son más seguras que las cimentaciones aisladas sobre suelos colapsables, ya que minimizan efectivamente los asentamientos diferenciales. La figura 11.5 muestra un procedimiento típico para la construcción cte cimentaciones continuas, mediante vigas zapatas y vigas longitudinales de carga.

En la construcción de estructuras pesadas, como silos para granos, sobre suelos colapsables, a veces son permitidos asentamientos de aproximadamente 1 pie ( 0.3 m) (Peck, Hanson y Thornburn, 1974). En este caso no es probable que ocurra una mclinación de la cimentación debido a que no hay una carga excéntrica. El asentamiento total esperado para tales estructuras debe estimarse por medio de pruebas de consolidacián estándar en muestras con contenido de agua de campo. Sin carga excéntrica, las cimentaciones exhibirán un asentamiento uniforme sobre depósitos tipo loes; sin embargo, si el suelo es de naturaleza aluvial natural o residual, el asentamiento podrá no ser uniforme. La razón es la no uniformidad generalmente encontrada en los suelos residuales.

En la construcción de estructuras pesadas deberá tenerse un cuidado extremo al plantarlas sobre suelos colapsables. Si se esperan grandes asentamientos deberán considerarse cimentaciones a base de pilotes o pilas perforadas. Ese tipo de cimentaciones transfieren la carga a un estrato con mayor capacidad de carga.

FIGURA 11.5 Cimentación con contratrabes de carga.

jueves, 31 de enero de 2013

CIMENTACIONES SOBRE SUELOS DIFÍCILES.

INTRODUCCIÓN 
En muchas áreas de Estados Unidos y otras partes del mundo, ciertos suelos hacen la construcción de cimentaciones extremadamente difícil. Por ejemplo, los suelos expansivos o colapsables llegan a causar grandes movimientos diferenciales en las estructuras debido a un excesivo levantamiento o asentamiento.

Problemas similares también surgen cuando las cimentaciones se construyen sobre rellenos sanitarios. Los ingenieros de cimentaciones deben ser capaces de identificar los suelos difíciles encontrados en el campo.

Aunque no todos los problemas causados por todos los suelos pueden resolverse, medidas preventivas deben tomarse para reducir la posibilidad de daños a estructuras construidas sobre ellos. Este capítulo subraya las propiedades fundamentales de tres condiciones de suelos: los suelos colapsables, los suelos expansivos y los rellenos sanitanos, así como los métodos de una cuidadosa construcción de cimentaciones.


lunes, 28 de enero de 2013

PILAS - ESPESOR DEL SELLO DE CONCRETO EN CAJONES ABIERTOS .

Ateriormente mencionamos que, antes de achicar el cajón, se coloca un sello de concreto en el fondo del mismo (figura 10.33) y se deja algo de tiempo para el curado. El sello de concreto debe ser suficientemente grueso para resistir una fuerza hidrostática hacia arriba desde su fondo después de que el achique se concluya y antes de que el concreto llene el cajón. Con base en la teoría de la elasticidad, el espesort, de acuerdo con Teng (1962), es


Cálculo del espesor del sello par un cajón abierto.
FIGURA 10.33 Cálculo del espesor del sello par un cajón abierto.
 y



De acuero con la figura 10.33, el valor de q en las Ecs. (10.48) y (10.49) se aproxima como




donde γc= peso específico del concreto

El espesor del sello calculado con las ecuaciones (10.48) y (10.49) será suficiente para protegerlo contra el agrietamiento inmediatamente despueés del achique. Sin embargo, otras dos condiciones deben también revisarse por seguridad.

1. Revisión del cortante perimetral en la cara de contacto del sello y el cajón.

De acuero con la figura 10.33, la fuerza neta hidrostática hacia arriba en el fondo del sello es AiHγw - Aitγc( donde Ai =  π(Ri)^2 para cajones circulares y Ai = LiBi para cajones rectangulares). El cortante perimetral desarrollado es entonces


2 Revisión por flotación

Si el cajón está completamente achicado, la fuerza de flotación hacia arriba, Fu. es


Si Fd > Fu, el cajón está seguro por flotación. Sin embargo, si Fd < Fu, achicar por completo el cajón será inseguro. Por esta razón, el espesor del sello debe incrementarse en  Δt [más allá del espesor calculado al usa la Ec. (10.48) o (10.49)] o




viernes, 25 de enero de 2013

TIPOS DE CAJONES - PILAS.

Los cajones se dividen en tres tipos principales: (1) cajones abiertos, (2) cajones cerrados y (3) cajones neumáticos.

Los cajones abiertos (figura 10.30) son pilas de concreto que permanecen abiertas en sus partes superior e inferior durante la construcción. El fondo del cajón tiene un borde cortante. El cajón se entierra en su lugar y el suelo del interior se retira por medio de cucharones de almeja hasta alcanzar el estrato de apoyo. Los cajones pueden ser circulares, cuadrados, rectangulares u ovalados. Una vez alcanzado el estrato de apoyo, se vierte concreto en el cajón (bajo agua) para formar un sello en su fondo. Cuando fragua el concreto del sello, el agua dentro del cajón se bombea hacia afuera. Se vierte entonces concreto en el cajón para llenarlo.

Cajón abierto.
FIGURA 10.30 Cajón abierto.

Los cajones abiertos pueden extenderse a grandes profundidades y el costo de construcción es relativamente bajo, sin embargo, una de sus principales desventajas es la falta de control de calidad sobre el concreto vertido para formar el sello. Además, el fondo del cajón no llega a ser limpiado completamente. Un método alternativo de construcción de cajones abiertos es hincar varias tablaestacas para formar una zona encerrada que se llena con arena a la que se llama generalmente isla de arena. El cajón se entierra entonces a través de la arena hasta el estrato deseado de apoyo, procedimiento algo parecido al hincado de un cajón cuando la superficie del terreno está arriba del nivel freático.

Los cajones cerrados (figura 10.3 1) son estructuras con fondo cerrado y se construyen en tierra y luego se transportan al sitio de la construcción. Se entierran gradualmente en el sitio llenando su interior con arena, balasto, agua o concreto. El costo de este tipo de construcción es bajo. La superficie de apoyo debe estar a nivel, y si no lo está, debe nivelarse por excavación.

Cajón cerrado.
FIGURA 10.31 Cajón cerrado.

Los cajones neumáticos (figura 10.32) se usan generalmente para profundidades de entre 50 y 130 pies (15—40 m). Este tipo se requiere cuando una excavación no logra mantenerse abierta porque el suelo fluye al área excavada más rápidamente de lo que puede ser removido. Un cajón neumático tiene una cámara de trabajo en el fondo que tiene por lo menos 10 pies ( 3m) de altura. En esta cámara, los trabajadores excavan el suelo y cuelan el concreto. La presión de aire en la cámara se mantiene suficientemente alta para impedir que el agua y el suelo penetren en ella. Los trabajadores usualmente no tienen molestias severas cuando la presión en la cámara se eleva a 15 Ib/puig2 ( 100 kN/m2) por encima de la presión atmosférica.

Cajón neumático.
FIGURA 10.32 Cajón neumático.

Más arriba de esta presión se requieren periodos de descompresión cuando los trabajadores salen de la cámara. Cuando se requieren presiones en la cámara de aproximadamente 44 lb/puIg2 ( 300 kN/m2) por arriba de la presión atmosférica, los trabajadores no deben permanecer dentro de la cámara por más de 1 a 2 horas por periodo de trabajo. Los trabajadores entran y salen de la cámara por medio de una escalera dentro de un tubo de acero. Éste también se usa para retirar el suelo excavado y para la colocación del concreto. En grandes construcciones, más de un tubo es necesario; se proporciona una antecámara de compresión en cada uno de ellos. Los cajones neumáticos se entierran gradualmente conforme avanza la excavación. Cuando se alcanza el estrato de apoyo, la cámara de trabajo se llena con concreto. El cálculo de la capacidad de carga de los cajones es similar al de las pilas perforadas.

lunes, 21 de enero de 2013

PILAS: OTRAS CONSIDERACIONES DE DISEÑO Y LA MEZCLA DE CONCRETO.

Para el diseño de pilas perforadas ordinarias sin ademado, es deseable siempre una cantidad mínima de refuerzo vertical de acero. El refuerzo mínimo es 1% del área total de la sección transversal de la pila. En California, se usa una jaula de refuerzo con longitud de aproximadamente 12 pies (3.65 m) en la parte superior del pilote y no se proporciona ningún refuerzo en el fondo Este procedimiento ayuda en el proceso de construcción porque la jaula se coloca después de que se completó la mayor parte del colado del concreto.

Para pilas perforadas con refuerzo nominal, la mayoría de los reglamentos de construcción sugieren usar una resistencia de diseño para el concreto fc del orden de f'c/4. Para el diámetro mínimo de la pila se tiene entonces


Dependiendo de las condiciones de carga, el porcentaje de refuerzo es a veces muy alto. En ese caso, se considera el uso de una sola sección laminada de acero en el centro de la pila (figura 1O.5b). En ese caso,



Cuando se usa un ademado permanente de acero para la construcción en vez de una sección laminada central de acero (figura 10.5a), se usa la ecuación (10.2). Sin embargo,fs para el acero debe ser del orden de 0.4fs.

Si las pilas perforadas van a ser sometidas a cargas de tensión, el refuerzo debe estar presente sobre toda la longitud de la pila.


Diseño de la mezcla de concreto
El diseño de mezclas de concreto para pilas perforadas no es muy diferente al usado para otras estructuras de concreto. Cuando se usa una parrilla de refuerzo, debe tomarse en cuenta que el concreto fluya a través del refuerzo. En la mayoría de los casos, un revenimiento del concreto de aproximadamente 6 pulgs (150 mm) se considera satisfactorio. El tamaño máximo de los agregados debe limitarse a aproximadamente 0.75 pulg (20 mm).

Resultados de pruebas de carga en una pila perforada en Houton, Texas: (a) perfil del suelo (b) curvas carga-desplazamiento. (c) curvas de distribución de la carga en varias etapas de la carga.
FIGURA 10.6 Resultados de pruebas de carga en una pila perforada en Houton, Texas: (a) perfil del suelo (b) curvas carga-desplazamiento. (c) curvas de distribución de la carga en varias etapas de la carga.

jueves, 17 de enero de 2013

PILAS PERFORADAS PROCEDIMIENTOS DE CONSTRUCCIÓN.

Uno de los métodos más viejos de construcción de pilas perforadas es el método Chicago (figura 10.2a). Para éste, se excavan manualmente agujeros circulares con diámetros de 3.5 pies (1.1 m) o mayores a profundidades de 2-6 pies (0.6-1.8 m). Los lados del agujero excavado se forran entonces con tablones verticales, mantenidos firmemente en su posición por dos anillos circulares de acero. Después de colocar los anillos, la excavación se continúa por otros 2-6 pies (0.6-1.8 m). Cuando se alcanza la profundidad deseada, se procede a excavar la campana. Cuando se termina la excavación, el agujero se rellena con concreto.

 Método Chicago para la construcción de pilas perforadas; (b) método de Gow para la construcción de pilas perforadas.
 FIGURA 10.2 (a) Método Chicago para la construcción de pilas perforadas; (b) método de Gow para la construcción de pilas perforadas.

En el método Gow de construcción (figura 10.2b), el agujero se excava a mano. Forros metálicos telescópicos se usan para mantener el barreno. Los forros son retirados uno a la vez conforme avanza el colado. El diámetro mínimo de una pila perforada Gow es de aproximadamente 4 pies (1.22 m). Cualquier sección del forro es aproximadamente 2 pulgs (50 mm) menor en diámetro que la sección inmediatamente arriba de ella. Pilas de hasta 100 pies (30 m) se logran con este método.

La mayor parte de las excavaciones se hace ahora mecánicamente y no a mano. Las barrenas helicoidales son herramientas comunes de excavación, que tienen bordes o dientes cortantes. Aquellas con bordes cortantes se usan principalmente para perforar suelos blandos y homogéneos; aquellas con dientes cortantes se usan en suelos o lechos duros. La barrena se conecta a una flecha cuadrada llamada Kelly que se hinca en el suelo y se hace girar. Cuando la hélice está llena con suelo, la barrena se levanta por arriba de la superficie del terreno y el suelo se descarga haciendo girar la barrena a alta velocidad. Esas barrenas se consiguen en varios diámetros; a veces son tan grandes como 10 pies (3 m) o mayores.
Cuando la excavación se extiende hasta el nivel del estrato de carga, la barrena se reemplaza, en caso necesario, por herramientas ensanchadoras para formar la campana.

Un trépano ensanchador consiste esencialmente en un cilindro con dos hojas cortadoras articuladas a la parte superior del cilindro (figura 10.3). Cuando el trépano se baja en el agujero, las hojas cortadoras permanecen plegadas dentro del cilindro. Cuando se alcanza el fondo del agujero, las hojas se despliegan hacia afuera y se hace girar el trépano. El suelo suelto cae dentro del cilindro que es elevado y vaciado periódicamente hasta que se termina de formar la campana. La mayoría de los trépanos llegan a cortar campanas con diámetros tan grandes como tres veces el diámetro de la flecha.
 Trépano ensanchador.
Figura 10.3 Trépano ensanchador.

Otro dispositivo cortador muy común es el taladro tipo cucharón. Se trata esencialmente de un cucharán con una abertura y bordes cortantes en el fondo. El cucharán se une al Kelly y se hace girat El suelo suelto se recoge en el cucharón que es elevado y vaciado periódicamente. Agujeros de hasta 160 18 pies (5-5.5 m) de diámetro se perforan con este tipo de equipo.

Cuando se encuentra roca durante la perforación, se usan barriles de extracción con dientes de carburo de tungsteno. Los barriles de granalla también se usan para perforar en roca muy dura. El principio de extracción de roca por medio de un barril de granalla se muestra en la figura 10.4. EJ vástago de perforación se conecta a la placa del barril de granalla, el cual tiene algunas ranuras a través de las cuales se suministran granallas de acero al fondo del agujero perforado. Las granallas cortan la roca cuando el barril es girado. A través del vástago se suministra agua al agujero perforado. Las partículas finas de roca y acero (producidas por el molido de las granallas) son lavadas hacia arriba y se asientan en la parte superior del barril.

La máquina Benotc’ es otro tipo de equipo perforador generalmente usado cuando las condiciones de perforado son difíciles y se encuentran muchos boleos en el suelo. Consiste esencialmente en un tubo de acero que oscila y se empuja en el suelo. Una herramienta llamada cuchara peforadora, provista con hojas y quijadas cortadoras, se usa para romper el suelo y la roca dentro del tubo y luego retirarlos.



Diagrama esquemático de un barril de granalla.
FIGURA 10.4 Diagrama esquemático de un barril de granalla.

lunes, 14 de enero de 2013

TIPOS DE PILAS PERFORADAS.

Las pilas perforadas se clasifican de acuerdo con la manera en que se diseñan para transferir la carga estructural al subsuelo. La figura 10.1a muestra una pila perforada recta, extendida a través de la capa superior de suelo pobre y su punta descansa sobre un estrato de suelo o roca con capacidad de carga. El barreno debe revestirse con acero cuando se requiera (como en el caso de los pilotes de concreto colados in situ revestidos; figura 9.4). Para tales pilas, la resistencia a la carga aplicada se desarrolla en la punta y también como resultado de la fricción lateral en el perímetro de la pila y la interfaz con el suelo.



Tipos de pilas perforadas:(a) pila recta; (b) y (c) pila acampanada; (d) pila recvta empotrada en roca.
FIGURA 10.1 Tipos de pilas perforadas:(a) pila recta; (b) y (c) pila acampanada; (d) pila recvta empotrada en roca.

Una pila acampanada (figura 10.lb y c) consiste en una pila recta con una campana en el fondo que descansa sobre un suelo resistente. La campana se construye con forma de domo (figura 10.lc) o de escarpio. Para campanas de escarpio, las herramientas o cortadores comercialmente disponibles forman ángulos de 30° a 450 con la vertical. Para la mayoría de las pilas perforadas construidas en Estados Unidos, la capacidad total de carga se asigna solamente a la carga en la punta, sin embargo, bajo ciertas circunstancias también se considera la resistencia por fricción. En Europa siempre se consideran ambas contribuciones.

Los pilotes rectos también se extienden hasta un estrato de roca (figura 10.ld). En el cálculo de la capacidad de carga de tales pilas, el esfuerzo cortante y el de carga desarrollados a lo largo del perímetro de la pila y en la interfaz con la roca deben tomarse en consideración.
Disposición de armaduras en vigas.
Figura 9.4  Disposición de armaduras en vigas.

jueves, 10 de enero de 2013

CIMENTACIONES CON PILAS PERFORADAS Y CIMENTACIONES CON CAJONES.

INTRODUCCIÓN
Los términos cajón, pila, pilote perforado ypila perforada se usan a menudo en forma general en la ingeniería de cimentaciones; todos se refieren a pilotes colados in situ con di4metro de aproximadamente 2.5 pies ( 750 mm) o mayor, con o sin refuerzo de acero y con o sin fondo ampliado. A veces el diámetro es tan pequeño como 1 pie ( 305 mm).

Para evitar confusiones, usamos el término pila perforada para un agujero barrenado o excavado hasta el fondo de la cimentación de una estructura que luego se rellena con concreto. Dependiendo de las condiciones del suelo se usan revestimientos o entabladuras (tablones o ademes) para prevenir que el suelo alrededor del agujero se desplome durante la construcción. El diámetro de la pila debe ser suficientemente grande para que una persona pueda entrar a inspeccionar.

El uso de cimentaciones con pilas perforadas tiene varias ventajas:

1. Se usa una sola pila perforada en vez de un grupo de pilotes con capuchón.
2. La construcción de pilas perforadas en depósitos de arena densa y grava es más fácil que hincar pilotes.
3. Las pilas perforadas se construyen antes de terminar las operaciones de nivelación.
4. Cuando los pilotes son hincados a golpe de martillo, la vibración del terreno ocasiona daños a estructuras cercanas, problema que se evita con el uso de pilas perforadas.
5. los pilotes hincados en suelos arcillosos producen levantamiento del terreno y ocasionan que pilotes ya antes hincados se muevan lateralmente, lo que no ocurre durante la construcción de pilas perforadas.
6. No se tiene ruido de martilleo durante la construcción de pilas perforadas, tal como pasa con el hincado de pilotes.
7. Como la base de una pila perforada se amplia, ésta proporciona una gran resistencia a cargas de levantamiento.
8. La superficie sobre la cual la base de la pila perforada se construye debe inspeccionarse visualmente.
9. La construcción de pilas perforadas utiliza generalmente equipo móvil, que, bajo condiciones apropiadas del suelo, resulta más económico que los métodos usados para la construcción de cimentaciones de pilotes.
10. Las pilas perforadas tienen alta resistencia a cargas laterales.

Existen también varias desventajas en el uso de pilas perforadas. La operación de colado puede demorarse por mal tiempo y siempre requiere de una cuidadosa supervisión. Además, como en el caso de cortes apuntalados, las excavaciones profundas para pilas perforadas inducen pérdidas considerables de terreno y ocasionan daños a las estructuras cercanas.

El ténnino cajón se refiere a un elemento de la subestructura usado en sitios húmedosde construcción, tales como ríos, lagos y muelles. Para la construcción de cajones, una pila hueca o cajón se hinca en posición hasta que descansa en suelo firme. A la parte inferior de la pila o cajón se le adapta un borde cortante para ayudarlo a penetrar los estratos de suelo blando debajo del nivel freático y llegue a descansar sobre un estrato resistente a cargas. El material dentro del cajón se extrae por las aberturas de la parte superior y luego se vierte el concreto en su interior. Los estribos de puentes, los muros de muelles y las estructuras para protección de costas deben construirse sobre cajones.

lunes, 7 de enero de 2013

FÓRMULAS PARA EL HINCADO DE PILOTES.

Para desarrollar la capacidad de carga deseada, un pilote de punta debe penetrar suficientemente el estrato denso de suelo o tener contacto suficiente con un estrato de roca. Este requisito no es siempre satisfecho hincando un pilote a una profundidad predeterminada debido a la variación de los perfiles del suelo, por lo que se han desarrollado varias ecuaciones para calcular la capacidad última de un pilote durante la operación. Las ecuaciones dinámicas son ampliamente usadas en el campo para determinar si el pilote ha alcanzado un valor satisfactorio de carga a la profundidad predeterminada. Una de las primeras de esas ecuaciones dinámicas, comúnmente llamada lafórinula del Engineering News Record (ENR), se deriva de la teoría del trabajo y la energía. Es decir,

Energía impartida por el martillo por golpe =  (resistencia del pilote) (penetración por golpe de martillo)

De acuerdo con la fórmula ENR, la resistencia del pilote es la carga última Q, expresada como





La penetración, S, del pilote se basa usualmente en el valor promedio obtenido de los últimos golpes del martillo. En la forma original de la ecuación se recomendaron los siguientes valores de C.

Para martillos de caída libre: C =1 puig (si las unidades de S y h están en pulgadas) Para martillos de vapor: C = 0.1 puig (si las unidades de S y h están en pulgadas)

Se recomendó también un factor de seguridad, FS, = 6, para estimar la capacidad admisible del pilote. Note que para martillos de acción simple y doble, el término WRh es reemplazado por EHE (donde E = eficiencia del martillo y HE = energía nominal del martillo). Entonces



La fórmula ENE ha sido revisada a lo largo de los años y también se han sugerido otras fórmulas de hincado de pilotes. Algunas están tabuladas en la tabla 9.11.

El esfuerzo máximo desarrollado en un pilote durant.e la operación de hincado se estima con las fórmulas presentadas en la tabla 9.11. Como ilustración, usamos la fórmula ENR modificada:


En esta ecuación, S es igual a la penetración promedio por golpe de martillo, que también se expresa como





TABLA 9.11 Fórmulas para el hincado de pilotes







Diferentes valores de N se suponen para un martillo y pilote dados y luego pueden calcularse Qu. El esfuerzo de hincado entonces se calcula para cada valor de N y Qu/Ap. Este procedimiento se muestra con un conjunto de valores numéricos. Suponga que un pilote de concreto presforzado de 80 pies de longitud tiene que ser hincado por un martillo 11B3 (MKT). Los lados del pilote miden 10 pulgadas. De la tabla D.3a (apéndice D) para este pilote


ahora puede prepararse la siguiente tabla





Tanto el número de golpes de martilo por pulgada como el esfuerzo ahora se grafican como muestra la figura 9.47. Si una tal curva se prepara, se determinará fácilmente el número de golpes por pulgada de penetración del pijote correspondiente al esfuerzo admisible de hincado del mismo.

Los esfuerzos reales de hincado en pilotes de madera están limitados aproximadamente a O.7fu. Similarmente, para los de concreto y de acero, los esfuerzos de hincado están limitados a aproximadamente O.6f’c y O.85fy, respectivamente.

En la mayoría de los casos, los pilotes de madera se hincan con una energía del martillo de menos de 45 klb-pies ( 60 kN.m). Las resistencias de hincado están limitadas principalmente a 4-5 golpes por pulgada de penetración del pilote. Para los de concretoy de acero, los valores usuales de N son 6 —8 y 12—14, respectivamente.






FIGURA 9.7
 

TABLA D.3 Pilotes de concreto presforzado típicos.

jueves, 3 de enero de 2013

PILOTES CARGADOS LATERALMENTE.

Un pilote vertical resiste cargas laterales movilizando la presión pasiva en el suelo que lo rodea (figura 9.1c). El grado de distribución de la reacción del suelo depende de (a) la rigidez del pilote, (b) la rigidez del suelo y (c) la restricción en los extremos del pilote. En general, los pilotes cargados lateralmente se clasifican en dos tipos principales: (1) pilotes cortos o rígidos y (2) pilotes largos o elásticos. Las figuras 9.37a y 9.37b muestran la variación de la deflexión del pilote y la distribución del momento y fuerza cortante a lo largo de la longitud del pilote sometido a carga lateral. Se da a continuación un resumen de las soluciones disponibles actualmente para pilotes cargados lateralmente.

 FIGURA 9.37 Variación de la deflexión, momento y fuerza cortante en pilotes (a) rígidos y (b) elásticos.

Entrada destacada

Hidratación del Cemento y Curado del Concreto

Hidratación del cemento y curado del concreto El curado del concreto no es simplemente una cuestión de endurecimiento del concreto a medida ...

Entradas populares