Pilotes de Acero y sus Características.

Los pilotes de acero son generalmente a base de tubos o perfiles H laminados. Los pilotes de tubo se hincan en el terreno con sus extremos abiertos o cerrados. Las vigas de acero de patín ancho y de sección 1 también se usan. Sin embargo, se prefieren los perfiles H porque los espesores de sus almas y patines son iguales. En las vigas de patín ancho y de sección 1, los espesores del alma son menores que los espesores de los patines. La tabla D.1 da las dimensiones de algunos pilotes de acero de sección H estándar usados en Estados Unidos. La tabla D.2  muestra secciones de tubo usadas con frecuencia como pilotes. En muchos casos, los tubos se llenan con concreto después de ser hincados.

La capacidad admisible estructural para pilotes de acero es



Con base en consideraciones geotécnicas (una vez determinada la carga de diseño para un pilote), es siempre aconsejable calcular si está dentro del rango admisible definido por la ecuación (9.1).

Cuando es necesario, los pilotes de acero se empalman por medio de soldadura, remaches o tornillos. La figura 9.2a muestra una condición típica de empalme por soldadura en un pilote H. En la figura 9.2b se muestra un típico caso de empalme por soldadura de un pilote tubo y en la figura 9.2c se muestra el empalme por remaches o tornillos de un pilote H.

Cuando se esperan condiciones difíciles de hincado, como a través de grava densa, lutitas y roca blanda, los pilotes de acero se usan adaptados con puntas o zapatas de hincado. Las figuras 9.2d y 9.2e muestran dos tipos de zapatas usadas en pilotes de tubo.

Los pilotes de acero llegan a estar sometidos a corrosión, como en suelos pantanosos, las turbas y otros suelos orgánicos. Los suelos con un pH mayor que 7 no son muy corrosivos. Para compensar el efecto de la corrosión se recomienda considerar un espesor de acero (sobre el área de la sección transversal real de diseño). En muchas circunstancias, los recubrimientos epóxicos, aplicados en la fábrica, sobre los pilotes funcionan satisfactoriamente. Esos recubrimientos no son dañados fácilmente por el hincado del pilote. El recubrimiento con concreto también los protege contra la corrosión en la mayoría de las zonas corrosivas.

Figura 9.2  Pilotres de acero: (a) empalme de pilotes H con soldadura;
(b) emplame de pilotes de tubo con soldadura;
(c) empalme de pilotes H con remaches y tornillos;
(d) punta planta de hincado de pilote de tubo;
(e) punta cónica de hincado de pilote de tubo.


TABLA D.1a  Secciones H comunes en Estados Unidos ( unindades inglesas )



TABLA D.1b Secciones H comunes en Estados Unidos


TABLA D.2 Algunas secciones de tubo para pilotes (unidades inglesas)



TABLA D.2b Algunas secciones de tubo para pilotes (uniddes IC)




TIPOS DE PILOTES Y SUS CARACTERÍSTICAS ESTRUCTURALES.

En los trabajos de construcción se usan diferentes tipos de pilotes, dependiendo del tipo de carga por soportarse, de las condiciones del subsuelo y de la local ización del nivel freático. Los pilotes se dividen en las siguientes categorías:

(a) de acero, Los pilotes de acero son generalmente a base de tubos o perfiles H laminados. Los pilotes de tubo se hincan en el terreno con sus extremos abiertos o cerrados....
(b) de concreto, Los pilotes de concreto se dividen en dos categorías: (a) pilotes prefabricados y (b) colados in situ. Los prefabricados se preparan usando refuerzo ordinario y son cuadrados u octagonales en su sección transversal....
(c) de madera Los de madera son troncos de árboles cuyas ramas y corteza fueron cuidadosamente recortadas. La longitud máxima de la mayoría de los pilotes de madera es de entre 30 y 65 pies (10-20 m). Para calificar como pilote, la madera debe ser recta, sana y sin defectos....
(d) pilotes compuestos. Las porciones superior e inferior de los pilotes compuestos están hechos de diferentes materiales, por ejemplo, se fabrican de acero y concreto o de madera y concreto....

CIMENTACIONES CON PILOTES - INTRODUCCIÓN.

Los pilotes son miembros estructurales hechos de acero, concreto y/o madera y son usados para construir cimentaciones, cuando son profundas y cuestan más que las cimentaciones superficiales. A pesar del costo, el uso de pilotes es a menudo necesario para garantizar la seguridad estructural. La siguiente lista identifica algunas de las condiciones que requieren cimentaciones de pilotes.

1. Cuando el estrato o estratos superiores del suelo son altamente compresibles y demasiado débiles para soportar la carga transmitida por la superestructura se usan pilotes para transmitir la carga al lecho rocoso o a una capa dura, como muestra la figura 9.la. Cuando no se encuentra un lecho rocoso a una profundidad razonable debajo de la superficie del terreno los pilotes se usan para transmitir la carga estructural gradualmente al suelo. La resistencia a la carga estructural aplicada se deriva principalmente de la resistencia a fricción desarrollada en la interfaz suelo-pilote (figura 9.1b).

2. Cuando están sometidas a fuerzas horizontales (véase la figura 9.1c), las cimentaciones con pilotes resisten por flexión mientras soportan aún la carga vertical transmitida por la superestructura. Este tipo de situación se encuentra generalmente en el diseño y construcción de estructuras de retención de tierra y en la cimentación de estructuras altas que están sometidas a fuerzas grandes de viento y/o sísmicas.

3. En muchos casos, suelos expansivos y colapsables están presentes en el sitio de una estructura propuesta y se extienden a gran profundidad por debajo de la superficie del terreno. Los suelos expansivos se hinchan y se contraen conforme el contenido de agua crece y decrece y su presión de expansión es considerable. Si se usan cimentaciones superficiales en tales circunstancias, la estructura sufrirá daños considerables. Sin embargo, las cimentaciones con pilotes se consideran como una alternativa cuando éstos se extienden más allá de la zona activa de expansión y contracción (figura 9.1d).

Los suelos como los constituidos por loess son de naturaleza colapsable. Cuando el contenido de agua de esos suelos aumenta, su estructura se rompe.

FIGURA 9.1 Condiciones para el uso de cimentaciones con pilotes

Una disminución repentina de la relación de vacíos induce grandes asentamientos de las estructuras soportadas por cimentaciones superficiales. En tales casos, las cimentaciones con pilotes se usan con éxito si éstos se extienden hasta las capas de suelo estables más allá de la zona de cambio posible de contenido de agua.

4. Las cimentaciones de algunas estructuras, como torres de transmisión, plataformas fuera de la costa y losas de sótanos debajo del nivel freático, están sometidas a fuerzas de levantamiento. Algunas veces se usan pilotes para esas cimentaciones y así resistir la fuerza de levantamiento (figura 9.1e).

5. Los estribos y pilas de puentes son usualmente construidos sobre cimentaciones de pilotes para evitar la posible pérdida de capacidad de carga que una cimentación superficial sufrirá por erosión del suelo en la superficie del terreno (figura 9.1f).

Aunque numerosas investigaciones, tanto teóricas como experimentales, se efectuaron para predecir el comportamiento y la capacidad de carga de pilotes en suelos granulares y cohesivos, los mecanismos no han sido aún totalmente entendidos y tal vez nunca lo sean. El diseño de las cimentaciones con pilotes es considerado un “arte” en vista de las incertidumbres implícitas al trabajar con las condiciones del subsuelo.

Diseño: Método flexible aproximado - Losa de cimentación.

En el método rígido convencional de diseño, la losa se supone infinitamente rígida. Además, la presión del suelo se distribuye en línea recta y el centroide de la presión del suelo coincide con la línea de acción de las cargas resultantes de las columnas (véase la figura 5.9). En el método flexible aproximado de diseño, el suelo se supone equivalente a un número infinito de resortes elásticos, como muestra la figura 5.9b, denominada a veces como la cimentación Winkler. La constante elástica de esos resortes supuestos se denomina el coeficiente k de reacción del subsuelo.

Para entender los conceptos fundamentales del diseño de cimentaciones flexibles, considere una viga de ancho B y longitud infinita, como muestra la figura 5.9c. La viga está sometida a una sola carga concentrada Q. De los fundamentos de la mecánica de materialés,






FIGURA 5.9  (a) Principios del diseño por el método rígido convencional; 
(b) principios del método flexible aproximado; 
(c) obtención de la ecuacion (5.42) para vigas sobre cimentación elástica.



La dimensión del término β como se definió en la ecuación anterior es (longitud)^-1. Este parámetro es muy importante en la determinación si una losa de cimentación debe ser diseñada por el método rígido convencional o por el método flexible aproximado. De acuerdo con el Comité 336 (1988) del American Concrete Institute, las losas deben diseñarse por el método rígido convencional si el espaciamiento de las columnas en una franja es menor que 1.75/β. Si es mayor que 1.75/β, deberá usarse el método flexible aproximado.
 
Para efectuar el análisis para el diseño estructural de una losa flexible, deben conocerse los principios de la evaluación del coeficiente, k, de reacción del subsuelo. Antes de proceder con el estudio del método flexible de diseño, veamos este coeficiente con más detalle.

Si una cimentación de ancho B (figura 5.10) está sometida a una carga por área unitaria de q, ésta sufrirá un asentamiento, Δ El coeficiente de módulo, k, del subsuelo se define como 






FIGURA 5.10  Definición del coeficiente k de la reacción del subsuelo.


 Las unidades de k son kN/m3 (o lb/pulg3). El valor del coeficiente de reacción del subsuelo no es una constante para un suelo dado. Éste depende de varios factores, como la longitud, L, y el ancho, B, de ¡a cimentación y también de la profundidad del empotramiento de ésta. Terzaghi (1955) hizo un amplio estudio de los parámetros que influyen en el coeficiente de reacción del subsuelo. Determinó que el valor del coeficiente disminuye con el ancho de la cimentación. En el campo deben llevarse a cabo pruebas de carga por medio de placas cuadradas de 1 pie X 1 pie (0.3 m X 0.3 m) para calcular el valor de k. El valor de k se relaciona con cimentaciones grandes que midan B X B de la siguiente manera.



Cimentaciones sobre suelos arenosos:


Cimentaciones sobre Arcillas:


La ecuación (5.49) indica que el valor de k para una cimentación muy larga con ancho B es aproximadamente O.67k(BxB).

El módulo de elasticidad de los suelos granulares crece con la profundidad. Como el asentamiento de una cimentación depende del módulo de elasticidad, el valor de k crece conforme aumenta la profundidad de la cimentación.

La tabla siguiente da algunos rangos típicos del valor para el coeficiente de reacción k1 del subsuelo para suelos arenosos y arcillosos.



El coeficiente de reacción del subsuelo es también un parámetro muy útil en el diseño de pavimentos rígidos de carreteras o aeropistas. El pavimento con una superficie de desgaste de concreto se llama generalmente pavimento rígido y con una superficie de desgaste asfáltica se llama pavimento flexible. Para una carga de superficie que actúa sobre un pavimento rígido, el esfuerzo de tensión máximo ocurre en la base de la losa. Para estimar la magnitud del esfuerzo de tensión horizontal máximo desarrollado en la base del pavimento rígido, son sumamente útiles las soluciones elásticas para losas sobre cimentaciones Winkler. Parte de este trabajo inicial fue hecho por Westergaard (1926, 1939, 1947).

Ahora que hemos analizado el coeficiente de reacción del subsuelo, procederemos con el análisis del método flexible aproximado de diseño de losas de cimentación. Este método, tal como es propuesto por el Comité 336 (1988) del American Concrete mstitute, será descrito paso a paso. El procedimiento de diseño se basa principalmente en la teoría de placas. Su uso permite que los efectos (es decir, momento, fuerza cortante y deflexión) de una carga concentrada de columna sean evaluados. Si las zonas de influencia de dos o más columnas se cruzan, se usa la superposición para obtener el momento, fuerza cortante y deflexión netos en cualquier punto.

1. Suponga un espesor, h, para la losa de acuerdo con el paso 6 como se hizo en el método rígido convencional. (Nota: Ji es el espesor total de la losa.)

2. Determine la rigidez por flexión R de la losa:



 3.  Determine el radio de la rigidez efectiva.


4.  Determine el momento (en coordenadas polares en un punto) causado por una carga de columna (figura 5.11a).



FIGURA 5.11 Método flexible aproximado para el diseño de losas.





Diseño rígido convencial de una losa de cimentación.

El método rígido convencional para el diseño de losas de cimentación se explica paso a paso con referencia a la figura 5.8.

1. La figura 5.8a muestra la losa de L X B y las cargas de columnas Q1, Q2, Q3,. . . Calcular la carga total de columnas según





 FIGURA 5.8  Diseño rígido convencial de una losa de cimentación.



2. Determinar la presión q sobre el suelo, debajo de los puntos A, B, C, D, ... de la losa, usando la ecuación


3. Comparar los valores de las presiones del suelo determinadas en el paso 2 con la presión neta admisible del suelo para determinar si q   <=   qadm(neta)

4. Dividir la losa en varias franjas en las direcciones x y y (véase la figura 5.8a). Haga el ancho de cualquier franja igual a B1.

5. Dibujar los diagramas de fuerza cortante, V y momento flexionante, M, para cada franja individual (en las direcciones x y y). Por ejemplo, la presión promedio del suelo en la franja del fondo en la dirección x de la figura 58a es




La reacción total del suelo es igual a qpromB1B. Ahora se obtiene la carga total en la columna sobre la franja igual a Q1 + Q2 + Q3 + Q4. La suma de las cargas de columná sobre la franja no será igual a qpBiB porque la fuerza cortante entre las franjas adyacentes no se ha tomado en cuenta. Por esta razón, la reacción del suelo y las cargas de columna necesitan ser ajustadas,


Las cargas de columna modificadas son entonces FQ1, FQ2, FC)3 y FQ4. Esta carga modificada sobre la franja se muestra en la figura 5.8b. Ahora se dibujan los diagramas de fuerza cortante y momento flexionante para esta franja. Este procedimiento se repite para todas las franjas en las direcciones x y y.

6. Determinar la profundidad efectiva d de la losa revisando el cortante por tensión diagonal cerca de varias columnas. De acuerdo con el Código 318-95 del ACI (Sección 11.12.2.lc, American Concrete Institute, 1995), para la sección crítica,


7. De los diagramas de momento de todas las franjas en una dirección (x o y), obtenga los momentos máximos positivo y negativo por ancho unitario (es decir, M’= M/B1).

 FIGURA 5.8



8. Determinar las áreas de acro por ancho unitario para refuerzo positivo y negativo en las direcciones x y y.


Los ejemplos 5.5 y 5.6 ilustran el uso del método rígido convencional para el disefio de losas de cimentación.

DISEÑO ESTRUCTURAL DE LAS LOSAS PARA CIMENTACIONES.

El diseño estructural de las losas de cimentación se efectúa por dos métodos convencionales: el método rígido convencional y el método flexible aproximado.

Los métodos de diferencias finitas y de elemento finito también se usan, pero esta sección sólo cubre los conceptos básicos de los dos primeros métodos de diseño.

1. Método rígido convencional.
2. Método flexible aproximado.

CIMENTACIONES COMPENSADAS.

El asentamiento de una losa de cimentación se reduce decreciendo el incremento de presión neta sobre el suelo, lo que se hace aumentando la profundidad de empotramiento, Df. Este aumento es particularmente importante para losas sobre arcillas blandas, donde grandes asentamientos por consolidación son de esperarse. De la ecuación (5.16), la presión aplicada neta promedio sobre el suelo es


Para no tener incremento de la presión neta del suelo sobre un suelo bajo una cimentación compensada, q debe ser cero. Entonces


Esta relación para Dse denomina usualmente la profundidad de una cimentación totalmente compensada.

El factor de seguridad contra falla por capacidad de carga para cimentaciones parcialmente compensadas (es decir, Df < Q/Aγ) se expresa como




Para arcillas saturadas, el factor de seguridad contra falla por capacidad de carga se obtiene sustituyendo la ecuación (5.10) en la ecuación (5.22):



OBSERVACIONES DE ASENTAMIENTOS EN CAMPO PARA LOSAS DE CIMENTACIÓN.

Varias observaciones de asentamientos en campo de losas de cimentación deben consukarse en la literatura técnica. En esta sección se comparan los asentamientos observados de algunas losas de cimentación construidas sobre depósitos de suelo granular con los obtenidos con las ecuaciones (5.12) y (5.13).

Meyerhof (1965) compiló los asentamientos máximos observados en losas de cimentación construidas sobre arena y grava, los cuales se muestran en la tabla 5.1. En la ecuación (5.13), si el factor de profundidad, 1 + O.33(Df/B), se supone aproximadamente igual a 1,


La tabla 5.2 muestra una comparación cte los asentamientos máximos observados de la tabla 5.1 y los asentamientos obtenidos con la ecuación (5.19). Para los casos considerados, la razón de Se calculada / Se obsevada varía entre 084 y 3.6. El cálculo de la capacidad de carga neta admisible con la ecuación (5.12) o (5.13) dará un valor seguro y conservador.

TABLA 5.1  Asentamiento observado maximo en losas de cimentacion sobre arena y grava.


Stuart y Graham (1975) reportaron el caso del edificio del Instituto Ashby de la Universidad Queens en Belfast, Irlanda, cuya construcción comenzó en agosto de 1960. El edificio está soportado por una losa de cimentación de 180 pies (longitud) x 65 pies (ancho). La figura 5.5a muestra un diagrama esquemático de la sección transversal del edificio. La naturaleza del subsuelo junto con los valores de la resistencia por penetración estándar en campo al sur del edificio, se muestran en la figura 5.5b. La base de la losa se construyó aproximadamente 20 pies abajo de la superficie del terreno.

La variación del número de penetración estándar corregido con la profundidad se muestra en la tabla 5.3. Note que el valor Ncor promedio entre el fondo de la losa y una profundidad de 30 pies ( = B/2) es aproximadamente 17. Los ingenieros estimaron para la carga muerta y viva [ec. (5.16)] neta promedio al nivel de la losa de cimentación un valor de 3360 lb/pies2. De la ec. (5.13),


Sustituyendo los valores apropiados en la ecuación (5.20) se obtiene el asentamiento en el extremo sur del edificio: 


Su construcción se terminó en febrero de 1964. La figura 5.6 muestra la variación del asentamiento medio de la losa en el extremo sui: En 1972 (ocho años después de la terminación del edificio) el asentamiento medio era de 055 pulgadas. El asentamiento estimado de 0.72 puig es entonces aproximadamente 30% mayor que el real observado.

TABLA 5.2 Comparación de asentamientos observados y calculados




FIGURA 5.5 Edificio Ashby Institute de la Universidad Queens,
según Stuart y Graham (1975): (a) sección transversal del edificio; (b) condjcion del subsuelo en el
extremo sur


TABLA 5.3 Determinación de la resistencia estándar a penetración corregida

FIGURA 5.6 Asentamiento medio en el extremo sur de la losa de cimentación, según Stuart y Graham (1975)

ASENTAMIENTOS DIFERENCIALES DE LOSAS PARA CIMENTACIONES.

El Comité 336 (1988) del American Concrete Institute sugirió el siguiente método para calcular el asentamiento diferencial de las losas de cimentación. De acuerdo con este método, el factor de rigidez (KY) se cacula como 



El término E'Ib espresar como


Con base en el valor de KY la razón (δ) del asentamiento diferencial al asentamiento total se estima de la siguiente manera: