Concreto, Concreto Reforzado, Concreto Preezforzado.


El concreto es un material semejante a la piedra que se obtiene mediante una mezcla cuidadosa mente proporcionada de cemento, arena y grava u otro agregado, y agua; después, esta mezcla se endurece en formaletas con la forma y dimensiones deseadas. El cuerpo del material consiste en agregado fino y grueso. El cemento y el agua interactúan químicamente para unir las partículas de agregado y conformar una masa sólida. Es necesario agregar agua, además de aquella que se requiere para la reacción química, con el fin de darle a la mezcla la trabajabilidad adecuada que permita llenar las formaletas y rodear el acero de refuerzo embebido, antes de que inicie el endurecimiento. Se pueden obtener concretos en un amplio rango de propiedades ajustando apropiadamente las proporciones de los materiales constitutivos. Un rango aún más amplio de propiedades puede obtenerse mediante la utilización de cementos especiales (cementos de alta resistencia inicial), agregados especiales (los diversos agregados ligeros o pesados), aditivos plastificantes agentes incorporadotes de aire, microsílice o cenizas volantes)y mediante métodos especiales d curado (curado al vapor).

Estas propiedades dependen en gran medida de las proporciones de la mezcla, del cuidado con el cual se mezclan los diferentes materiales constitutivos, y de las condiciones de humedad temperatura bajo las cuales se mantenga la mezcla desde el momento en que se coloca en la formaleta hasta que se encuentra totalmente endurecida. El proceso de control de estas condiciones se conoce como curado. Para evitar la producción de concretos de bajos estándares se requiere un alto grado de supervisión y control por parte de personas con experiencia durante todo el proceso desde el proporcionamiento en peso de los componentes, pasando por el mezclado y el vaciado hasta la terminación del curado.

Los factores que hacen del concreto un material de construcción universal son tan evidentes que ha sido utilizado de diversas maneras por miles de años; probablemente se comenzó a usar en el antiguo Egipto. Uno & estos factores consiste en la facilidad con la cual, mientras encuentra en estado plástico, puede depositarse y llenar las formaletas y moldes de cualquier forma. Su alta resistencia al fuego y al clima son ventajas evidentes. La mayor parte de los materiales constitutivos, con la excepción del cemento y los aditivos, están disponibles a bajo costo, localmente o muy cerca del sitio de construcción. Su resistencia a la compresión, simulara la de las piedras naturales, es alta lo que lo hace apropiado para elementos sometidos principalmente a compresión, tales como columnas o arcos. Asimismo, de nuevo como en las piedras naturales, el concreto es un material relativamente frágil, con una baja resistencia a la tensión comparada con la resistencia a la compresión. Esto impide su utilización económica en elementos estructurales sometidos a tensión ya sea en toda su sección (como el caso de elementos de amarre) o sobre parte de sus secciones transversales (como en vigas u otros elementos sometidos a flexión).


Para contrarrestar esta limitación, en la segunda mitad del siglo XIX se consideró factible utilizar acero para reforzar el concreto debido a su alta resistencia a la tensión, principalmente en aquellos sitios donde la baja resistencia a la tensión del concreto limitaría la capacidad portante del elemento. El refuerzo, conformado usualmente por barras circulares de acero con deformaciones superficiales apropiadas para proporcionar adherencia, se coloca en las formaletas antes de

En tiempos más recientes se ha logrado la producción de aceros cuya resistencia a la fluencia es del orden de cuatro y más veces que la de los aceros comunes de refuerzo, a costos relativamente bajos. Asimismo, ahora es posible producir concretos con resistencias a la compresión cuatro a cinco veces mayores que los concretos comunes. Estos materiales de alta resistencia ofrecen ventajas que incluyen la posibilidad de emplear elementos con secciones transversales más pequeñas disminuyendo las cargas muertas y logrando luces más largas. Sin embargo, existen límites en las resistencias de los materiales constitutivos, por encima de los cuales surgen ciertos problemas. En efecto, la resistencia del elemento se incrementa aproximadamente en proporción a aquélla de los materiales. Sin embargo las altas deformaciones unitarias que resultan de los altos esfuerzos darían como resultado altas deformaciones y deflexiones de estos elementos bajo condiciones normales de carga. Igualmente importante es que las grandes deformaciones unitarias en los aceros de refuerzo de alta resistencia inducirían amplias grietas en el concreto, de baja resistencia a la tensión de sus alrededores, lo cual no sólo sería estéticamente inadmisible, sino que expondría el acero de refuerzo a la corrosión por humedad y otras acciones químicas. Esto limita la resistencia a la fluencia útil de los aceros de alta resistencia a aproximadamente 80 klb/pulg^2 es, de acuerdo con muchas normas y especificaciones; el de 60 Klb/pulg^2 es el más común.

A pesar de lo anterior, se ha encontrado una manera especial para combinar aceros y concretos de muy alta resistencia. Este tipo de construcción conoce como concreto preesforzado. El acero, usualmente en forma de alambres, cables o barras, se embebe en el concreto sometiéndolo a una tensión alta, la cual se equilibrará con esfuerzos de compresión en el concreto después del endurecimiento. Debido a esta precompresión, el concreto de un elemento a flexión se agrietará en la zona de tensión para cargas mucho más altas que cuando no está precomprimido. El preesfuerzo reduce de manera significativa las deflexiones y las grietas de flexión para cargas normales, y de esta manera permite la utilización efectiva de materiales de alta resistencia. El concreto preesforzado ha extendido significativamente el rango de luces posibles del concreto estructural y los tipos de estructuras para los cuales es adecuado.

0 comentarios:

Publicar un comentario en la entrada